
Better is Different

Arthur Carabott

Global Innovation Design

Royal College of Art

2016

10,298 words

Abstract

There must be a better way
We have a better way
At least we think it is better
It looks better
It smells better
How can we get people to use it?
Can we stop them from using their old way?
It would be better for them
Why won’t they believe us?
Probably because it’s different
But better is different

We need a revolution

Contents

1 Introduction 1
Making Better ‘Things’ . 2
A model of progress . 2
From ‘Things’ to things . 2
Why should you care? . 2
Focus of this dissertation . 3

2 A Model of Progress 4
Two types of work . 4
The stages of progress . 4
Using the model . 6

3 Computing 8
Computing Definitions . 8
State of computing today . 9
Computing Paradigm Shifts . 12
Is progress important in computing? 15

4 Musical Interfaces 20
What is a musical interface? . 20
What is progress for a musical interface? 20
Is progress important in musical interfaces? 21
Interface Influence . 22

5 Revolution, Education, Stagnation, Domination 24
Xerox PARC: Dealers of Lightning, Catalyst of Crisis 24
How to shift paradigms and influence people 28
Education . 29
Technology is people . 31
Stagnation . 32
Crisis . 33
Force and Endorse . 39

6 How to start a revolution 40
No royal road to revolution . 40
Patterns in Paradigms . 41

Appendices 45

i

A Squeak/Smalltalk session with Yoshiki Ohshima 46

B Cult 49

C Interview with Bret Victor 53

ii

List of Figures

3.1 The Git version control system 8
3.2 The Sublime Text 3 text editor 9
3.3 Apple’s Xcode IDE . 10
3.4 The Squeak/Smalltalk environment 10
3.5 A mundane UI . 11
3.6 String reversing code in Assembly 13
3.7 String reversing code in C . 14
3.8 String reversing code in Smalltalk 14
3.9 The ‘block based’ Scratch programming environment 15
3.10 Fibonacci algorithm in Scheme 16
3.11 Object Orientated Python code for a monster battle game 16
3.12 The Ohm language editor . 18
3.13 A PX example from Bret Victor’s Learnable Programming 18

4.1 Bars 309-314 of Xenakis’ graphical score for Metastasis 21

5.1 Visualisation of Moore’s law . 25
5.2 Alan Kay’s Dynabook, (Kay 1972, p.6). 27
5.3 Apple’s Swift Playgrounds . 29
5.4 A ‘patch’ made in Cycling ’74’s Max (Cycling ’74 2016a). 30
5.5 The UAudio 1176 Limiter interface 32
5.6 Two on-screen rotating dials with interactions 33
5.7 A bad threshold control . 34
5.8 An improved threshold control by the author 34
5.9 A sine curve at MIDI and OSC resolutions 36
5.10 Three continuous MIDI controllers 38

A.1 Working on an envelope GUI widget in Squeak / Smalltalk. . . . 46

B.1 Cult leader? . 52

iii

Chapter 1

Introduction

The development and improvement of any ‘thing’ is often a struggle. What is
a ‘thing’? In the grand scheme of things, it does not matter. So many ‘things’
share the same difficulties in improving that this seems to be a general problem,
or set of problems

• ‘Thing’ includes tools, like the pen

• ‘Thing’ includes products, like the car

• ‘Thing’ includes methods, like that of a teacher

• ‘Thing’ includes ideas, like duality

• ‘Thing’ includes paradigms, like peer review

• ‘Thing’ includes forms, like the novel

• ‘Thing’ includes platforms, like Mac OS X

• ‘Thing’ includes protocols, like semaphore

• ‘Thing’ includes languages, like Esperanto

• ‘Thing’ includes programming languages, like JavaScript

• ‘Thing’ includes laws, like the criminalisation of drugs

• ‘Thing’ includes theories, like the earth is flat

• ‘Thing’ includes conceptual models, like western musical theory

• ‘Thing’ includes interfaces, like Desktop based computing

• ‘Thing’ includes behaviours, like social interactions

• ‘Thing’ includes opinions, like ‘organic food is healthier’

• ‘Thing’ includes standards, like IEEE 802.11 Wireless Networking –‘WiFi’.

1

Making Better ‘Things’
When an improvement to a ‘thing’ comes along, why does it only sometimes
usurp its predecessor, and other times fail to take off? Are there different types
of progress? Can we understand how revolutions (as opposed to evolutions) of
‘things’ happen? Where are the current leverage points: is it the right time
to be focusing on evolutionary or revolutionary improvements? What are the
practical lessons to be learnt by taking this abstract view of progress?

A model of progress
Thomas S. Kuhn’s The Structure of Scientific Revolutions is my lens with which
to examine ‘things’ and their progress (or lack thereof) – Kuhn’s model will be
outlined in Chapter 2.

From ‘Things’ to things
“Thinking, which is properly nothing and nowhere, can only lay hold
of itself in the form of a thing.”

(Steven Connor (2010), p.1)

‘Thing’ is a good general term and a personal favourite, but to transmit
clear ideas and meaning I must take concrete examples of ‘things’, so that you,
the reader, can have a clear reference point, for the ideas being discussed.

The risk with concrete examples of ‘things’ is that the ideas may be falsely
assumed to be limited to the example ‘thing’, and the generality of the idea
being lost. To reduce this risk, for each idea, two concrete ‘things’ will be given,
from two contrasting domains. The hope is that this will provide enough variety
to prove the idea flexible enough to be applied beyond the concrete examples.
The examples are taken from domains that I am familiar with, in order to be
able to best illustrate the concepts. The intention is that these domains are
contrasting, yet with enough overlap so that the ideas may be shown to be
flexible, while not overly bent to fit the example.

My ‘things’ are musical interfaces and computer programming languages,
tools and environments.

My JavaScript is your Photoshop
My EQ plugin is your spell checker
My functional programming is your empiricism
My MIDI is your chef’s knife

Why should you care?
Have you noticed that their stuff is shit, and your shit is stuff?

(George Carlin – Stuff)

You may not care at all about programming or musical interfaces1, but
1on the other hand you probably care about the end results of these things, can you

remember a day you didn’t hear or at least hum music? Or interact with something with a
computer inside it?

2

chances are you have your own stuff which has its own drunken path of progress.
Some of the ideas will translate to your domain, as indeed they have translated
from Kuhn’s Science to mine. There are larger patterns at play that are useful
regardless of field.

Focus of this dissertation
The focus of this dissertation is on the ‘revolutions’ not the ‘evolution’, on
the ‘new’ and not the ‘news’. Both are essential: but evolutionary work has
a clearer path, it is ‘normal science’ work within a given paradigm, creating
the new paradigm is a far less straightforward task. In Science, revolutionaries
dominate history, in computing the inverse is true, where the ‘things’ most
valued are consumer facing, rather than the pioneering ideas or prototypes.

By being more aware that there is more than one type of progress, we can
make better decisions about where to focus our efforts: there is no point in
trying to start a revolution if one has just occurred, and likewise there is little
to be gained by evolving an idea that is about to have the carpet pulled out
from underneath it.

3

Chapter 2

A Model of Progress

In The Structure of Scientific Revolutions, Kuhn (2012) uses case studies from
the natural sciences to construct a theory of the process through which scientific
revolutions occur. The stages of this structure are:

1. Pre-paradigm

2. Paradigm

3. Normal Science

4. Anomaly

5. Crisis

6. Revolution

After the first paradigm of a field is established, the remaining periods are
repeated with each revolution leading to a new paradigm.

Two types of work
Kuhn makes an important distinction between types of scientific work: that
which causes ‘paradigm shifts’1 and ‘normal science’, which is “directed to the
articulation of those phenomena and theories that the [current] paradigm al-
ready supplies” (Kuhn 2012, p.24).

The stages of progress

Pre-paradigm
The pre-paradigm phase for a field can only exist once. Work is often highly
speculative and theories are difficult to articulate (Kuhn 2012, p.61), leading to
“frequent and deep debates over legitimate methods, problems, and standards of
solution” (Kuhn 2012, p.48). The results of this period rarely lead to agreement,
but more often the establishment of competing schools (Kuhn 2012, p.48, 162).

1forgive this now clichéd phrase, Kuhn coined it.

4

While many approaches may not be fruitful, a new paradigm may break through,
seemingly overnight (Nisbett 2015, p.265).

Paradigm
For a paradigm to establish itself it must “seem better than its competitors”, and
usually solves “problems that the group of practitioners has come to recognize
as acute”, yet it “need not [...] explain all the facts” (Kuhn 2012, p.18, 23).

Kuhn asserts that the establishing of a new paradigm ‘demands’ the destruc-
tion of a prior paradigm, (Kuhn 2012, p.96). This is an area for which Kuhn
has received criticism (Bird 2013). As will be established in Chapter 5, things
differ in software, old paradigms and their tools can last for decades, and in the
music industry fanatic reverence is found for vintage equipment.

A well established paradigm brings a wide range of benefits: criteria for
choosing problems which can be assumed to have answers; a set of problems
that would be almost impossible to have previously imagined; the requirement
to investigate with a high degree of detail and depth; and a set of restrictions
that are essential to development (Kuhn 2012, p.37, 24, 25); students can quickly
acquire theory, methods, and standards, removing the requirement to start from
first principles (Kuhn 2012, p.109, 20).

The examples of paradigms that Kuhn (2012) uses are Copernicus’s Astron-
omy, Newton’s Mechanics, Lavoisier’s Chemistry, and Einstein’s Relativity, but
Kuhn notes that a revolution “need seem revolutionary only to those whose
paradigms are affected by them. To outsiders they may, like the Balkan revo-
lutions of the early twentieth century, seem normal parts of the developmental
process.” (Kuhn 2012, p.93).

Normal Science
‘Normal science’ refers to “research firmly based upon one or more past scientific
achievements, achievements [...that supply] the foundation for its further prac-
tice.” (Kuhn 2012, p.10). This is when science simultaneously “moves fastest
and penetrates most deeply” as well as having the striking feature of very lit-
tle “aim to produce major novelties, conceptual or phenomenal” (Kuhn 2012,
p.76,35).

Anomaly
An anomaly signals the potential for a revolution, it is a violation of the expec-
tations of the current paradigm (Kuhn 2012, p.52). Upon discovery, an attempt
is usually made to bend the rules of normal science to see if they can account
for it, often searching at random. Even with a ‘severe and prolonged’ anomaly,
scientists can be reluctant to renounce the prevailing paradigm (Kuhn 2012,
p.86-87). Only once the anomaly appears to be more than another puzzle of
normal science will it transition to crisis.

Crisis
The arrival of a crisis is the time when testing of the current paradigm occurs,
when its framework blurs and its rules loosen. If normal science results in

5

persistent failure, then the stage is set for novel theories to emerge, usually
prolifically (Kuhn 2012, p.84, 144, 75). Crises too will proliferate just before
(and during) a revolution, and may end in one of three ways: normal science
finds a way to reconcile the problem, the crisis resists even radical approaches, or
a viable candidate paradigm emerges, leading to the battle over its acceptance
(Kuhn 2012, p.48, 84).

Revolution
Kuhn says that it takes a practitioner who is “little committed to the traditional
rules”, and either “’very young or very new to the field” to see that the rules
may no longer apply. Initially there will be few supporters who may be making
decisions based on faith or intuition. How the breakthrough actually occurs
to the individual is “inscrutable and may be permanently so.” (Kuhn 2012,
pp.90,156).

The period of revolution can be tumultuous, paradigms are not easily dis-
placed, proponents of old and new paradigms talk past each other, as their
arguments are made within their respective paradigms, and for true commu-
nication to happen a group must be converted to the new paradigm to truly
understand it! (Kuhn 2012, pp.148, 149, 94)

For the paradigm destined to prevail, the community surrounding it will
improve and grow it to the point where it is able to make further converts. The
criteria for credibility are not always clear: solving the problems of a crisis is
‘rarely sufficient’, while ‘inarticulate aesthetic considerations’ of a theory such
as being ‘neater’, ‘more suitable’, or ‘simpler’ are often essential. The merits of
either side of the arguments remain unclear “since no paradigm ever solves all
the problems it defines and [...] no two paradigms leave all the same problems
unsolved”, the real question is “which problems is it more significant to have
solved?”; the most important answer is “the problems that have led the old
[paradigm] to a crisis” (Kuhn 2012, pp.90, 109, 147, 151, 152, 154, 157).

Inevitably the conversion is a gradual shift in opinion, at the community
level, with hold-outs reassuring themselves that problems still be solved by the
previous paradigm. Kuhn rather bluntly asserts that those who resist indefi-
nitely tend to be the “older and more experienced ones”, and the only path to
unity for the profession being to wait for them to die (Kuhn 2012, p.150)!

The effects of a revolution can be far-reaching. Nisbett (2015, p.267) links
the invention of the steam engine to cotton replacing wool as the primary ma-
terial for clothing and the deregionalising of manufacturing. The revolution can
also take a long time to take hold, Alan Kay (2009) notes the significant lag be-
tween the invention of the printing press (in 1440) to the truly significant effect
it had on the world, through the publishing of Galileo (150 years later), Newton
(250 years) and the ratification of the American Constitution (350 years) (Kay
2009, 31:05).

Using the model
There are patterns in Kuhn’s model that feel applicable to fields outside science.
It cannot be expected to fit in every case, the work itself received a great deal
of criticism in its own field (Bird 2013, section 6).

6

This criticism was twofold: first the claim that in order for science to be rev-
olutionary it must displace an incumbent paradigm2, and second his ‘incommen-
surability thesis’, that is that theories cannot be straightforwardly compared as
they do not have a shared set of requirements (Bird 2013). This second criticism
is of less concern as it is permissible for competing programming languages and
musical interfaces to exist simultaneously: in many cases they will have different
utilities, and it is up to the user to decide which best suits their needs. The
first area of criticism argues that simultaneous paradigms are able to co-exist3:
as (Nisbett 2015, p.267) notes, revolutions can instead establish a new body of
work that ‘couldn’t have been produced within the [previous] framework’; this
could be understood as the establishing of a first (sub) paradigm.

2a counter example is the discovery of the structure of DNA, and the revolution in molecular
biology it caused (Bird 2013, section 6.1)

3this is not to say they do so without conflict

7

Chapter 3

Computing

Computing Definitions
‘Computing’ is a broad term within which I focus on programming languages and
the tools and environments for programming, as these are points of significant
influence on the programmer, and the resulting programs. A programming
language is a compromise language that is understandable by both humans and
computers; but optimised for neither. Assembly language is as close to ‘the
metal’ 1 as a programmer will bother with these days 2. At the other end of the
spectrum are languages that favour the programmer’s experience over machine
considerations such as efficiency, performance, memory usage3.

A programming tool is something that is used as part of the process of
programming, but is not itself a language, e.g. Git is a ‘version control system’
used to keep track of change in code (Torvalds 2016), enabling programmers to
switch between different versions of a file: a ‘stable’ version that is ready for
production, and an work-in-progress version that has an unfinished new feature
(Figure 3.1).

Figure 3.1: A GUI for the Git version control system, with history for this
dissertation.

A programming environment is the piece of software within which code is
1a term that refers to how closely matched the instructions are to the computer hardware

instructions
2originally programming was done in pure binary, which is the language a computer un-

derstands, but makes no compromises for the human
3this was one of the design philosophies of the Ruby language (Venners 2003, p.4)

8

written. This ranges from a simple text editor (Figure 3.2), to an Integrated De-
velopment Environment (IDE) to whole operating systems in which everything
can be coded. An IDE such as Apple’s Xcode (Figure 3.3) (Apple Inc. 2016b)
provides tools not only for writing code, but for ‘building’ 4, testing, debugging
(finding errors), making large scale changes, and designing user interfaces.

Smalltalk, and its contemporary offspring (Squeak Project 2016) take the
environment further; consumption and creation happen in the same environ-
ment, windows for editing code are indistinct from the programs and graphics
they are creating, all of which can be modified on the fly, including the cursor!
(Figure 3.4).

Figure 3.2: The Sublime Text 3 text editor, being used to write this dissertation
in LATEX (Sublime Text 2016).

State of computing today
Programming languages and environments are currently very poor. This may
be a surprising statement to a non-programmer (and even many programmers)
given that these tools are used to build all of the magical technology that we use
everyday, including the most significant invention in recent history: the internet.

While surprising and perhaps controversial, this statement is hardly origi-
nal. Proclamations to this effect have been made by some of today’s computing
significant figures: Alan Kay (Kay et al. 2007; Kay 2011), Gerry Sussman (Suss-
man 2011), Bret Victor (Victor 2013). The steady stream of new programming
languages annually (Sureau 2015) underlines the need for better tools.

What is surprising is that this is true despite the huge efforts directed at
these tools by programmers and the vast sums of money spent and generated
by these technologies5.

Victor (Victor 2013) argues that this is due to a collective forgetting of the
pioneering ideas (Ivan Sutherland (1964), Douglas Engelbart (1962), Smalltalk

4the process of turning code into an application than can run on the machine
5Silicon Valley being the main case in point

9

Figure 3.3: Apple’s Xcode Integrated Development Environment, (Apple Inc.
2016b).

Figure 3.4: The Squeak/Smalltalk environment, with no distinction between
the elements for coding and those being coded (Squeak Project 2016).

10

(Ingalls 1978) etc.) that emerged in the 60s and 70s, with today’s programmers
simply unaware that there are alternative models to what they have learned.
Victor categorises the 1960s and 70s as being Kuhn’s ‘pre-paradigm’ phase for
computing. As paradigms are now been established Victor describes us as cur-
rently being in the ‘normal science phase, or as Sussman (2011) more bluntly
puts it we are “diddling with our details”.

While it may seem that it is ideas and not money that is the issue 6, the
funding needs toe be focused on visionary long term research as with Xerox
PARC7 (Hiltzik 2009, p.25) and the U.S. Defence Department’s Advanced Re-
search Projects Agency (ARPA)8 under the guidance of J.C.R. Licklider in the
1960s (Hiltzik 2009; Victor 2013, p.45). Funding in industry focuses more on
creating products realisable in the near future, even in so called ‘moonshot’
research labs9.

Not just the inmates
While these concerns may only seem relevant to programmers, the effects are
felt by everyone affected by computers today, which is to say, everyone. This is
because systems today still favouring the computer and not the programmer,
resulting in software that favours the computer and not the user. The effect
may be as mundane as unhelpful user interfaces (Figure 3.5), or lack of interop-
erability that forces manual copying data from one program to another. At the
other end of the spectrum grave effects abound: one in five genetics papers have
errors in their gene lists because spreadsheets automatically convert gene names
to dates (Ziemann et al. 2016); a coding error in ‘the most influential economic
analysis of recent years’ (Krugman 2013) that excluded Australia, Austria, Bel-
gium, Canada and Denmark from an economic model, resulting in a significant
(and false) argument for the austerity policies that have ascended in Europe
and the United States since 2010 (Herndon, Pollin, and Ash 2013, p.4).

Figure 3.5: A mundane UI from the Audacity audio editor (Audacity Team
2016) with no regard for number ranges, magnitudes or growth rates. Also fea-
tures a uniform interaction method that does not take into account the resulting
effect, and a lack of feedback.

These effects of computer orientated computing are the focus of The Inmates
are Running the Asylum in which Cooper (1999) argues that errors like those

6due to the abundance of it in the technology startup world the video game industry, to
name just two worlds that are almost entirely dependent on programming

7discussed later in Chapter 5
8now DARPA - Defense Advanced Research Projects Agency
9recently demonstrated by Google putting their ‘Boston Dynamics’ robotics company –one

of the leading robotics companies– up for sale (Clark 2016)

11

above are mislabelled ‘human errors’ when in fact the responsibility should lie
with the software for treating the users as other computers, and not as humans
(Cooper 1999, p.3).

Computing Paradigm Shifts
The development of programming languages with higher levels of abstraction,
‘high-level languages’, as opposed to those that are ‘low-level’ or ‘close to the
metal’ closely matches Kuhn’s model. A low-level language has a more direct
mapping with hardware machine code (the lowest level of which being binary);
a high-level language uses layers of abstraction so that the programmer can
focus on what they want the machine to do, not how the machine should do
it. The first level of abstraction was Assembly language, which used symbols to
represent patterns of 1s and 0s, instead of the binary values themselves. The
story of this early development, and an example of why the field of programming
languages tends to develop slowly is well recounted by Hamming (1997, p.25).

“In the beginning we programmed in absolute binary... Finally, a
Symbolic Assembly Program was devised [...]. At the time [the as-
sembler] first appeared I would guess about 1% of the older program-
mers were interested in it – using [assembly] was “sissy stuff”, and
a real programmer would not stoop to wasting machine capacity to
do the assembly.10

This cycle continued, with higher level languages appearing, being dismissed,
finding their true believers, and eventually becoming the old guard. When the C
language (Ritchie and Kernighan 1978) first appeared, it was regarded as high-
level; today it is considered low-level, while higher level ‘scripting’ languages
(also initially dismissed for doing real work) may be the only languages used
day to day (or ever) by a professional programmer. See Figures 3.6 to 3.8
for examples of the same program written in languages at different levels of
abstraction.

The narrative continues today with arguments over whether visual, ‘block
based’ programming is ‘real enough’ to teach children programming (Guzdial
2016) (Figure 3.9).

While this form of development fits with Kuhn’s model, there is another
form of paradigm within computing that differs from it; today when people
refer to ‘programming paradigms’ they are referring to the different families
of languages that live alongside each other simultaneously, and the modes of
thinking they encourage. Nisbett 2015, p. 267 discusses how this occurs, with
the result of a paradigm shift being the emergence of a new field that can exist
alongside its predecessor.

10 Yes! Programmers wanted no part of it, though when pressed they had to admit their old
methods used more machine time in locating and fixing up errors than the [assembler] ever
used.
[...]
FORTRAN was proposed by Backus and friends, and again was opposed by almost all

programmers. First, it was said it could not be done. Second, if it could be done, it would
be too wasteful of machine time and capacity. Third, even if it did work, no respectable
programmer would use it – it was only for sissies!”

12

1 REVERSE CSECT
2 USING REVERSE,R13 base register
3 B 72(R15) skip savearea
4 DC 17F'0' savearea
5 STM R14,R12,12(R13) prolog
6 ST R13,4(R15) "
7 ST R15,8(R13) "
8 LR R13,R15 "
9 MVC TMP(L'C),C tmp=c

10 LA R8,C @c[1]
11 LA R9,TMP+L'C-1 @tmp[n-1]
12 LA R6,1 i=1
13 LA R7,L'C n=length(c)
14 LOOPI CR R6,R7 do i=1 to n
15 BH ELOOPI leave i
16 MVC 0(1,R8),0(R9) substr(c,i,1)=substr(tmp,n-i+1,1)
17 LA R8,1(R8) @c=@c+1
18 BCTR R9,0 @tmp=@tmp-1
19 LA R6,1(R6) i=i+1
20 B LOOPI next i
21 ELOOPI XPRNT C,L'C print c
22 L R13,4(0,R13) epilog
23 LM R14,R12,12(R13) "
24 XR R15,R15 "
25 BR R14 exit
26 C DC CL12'Paradigm'
27 TMP DS CL12
28 YREGS
29 END REVERSE

Figure 3.6: Code to reverse and print the string ‘Paradigm’ in the low-level 360
Assembly language (Rosetta Code 2016).

13

1 #include <stdio.h>
2 int main(){
3 const int length = 9;
4 char input[length] = "Paradigm";
5

6 // copy the characters starting at the end
7 int i = length - 2;
8 int j = 0;
9 char reversed[length];

10 while(i >= 0) {
11 reversed[j] = input[i];
12 j++;
13 i--;
14 }
15

16 // add null terminal
17 reversed[length - 1] = '\0';
18

19 printf("%s\n", reversed);
20 return 0;
21 }

Figure 3.7: Code to reverse and print the string ‘Paradigm’ in the once high-
level, now low-level language C (by author).

1 Transcript show: 'Paradigm' reversed

Figure 3.8: Code to reverse and print the string ‘Paradigm’ in the high-level
language Smalltalk (by author).

14

Figure 3.9: The ‘block based’ Scratch programming environment aimed at young
children (Lifelong Kindergarten Group at the MIT Media Lab 2016).

Certain paradigms can happily co-exist as they may be more or less suited to
different fields: ‘Functional’ languages are well suited to mathematics because
the computational model is akin to mathematical functions (Figure 3.10), while
‘Object Orientated’ languages are well suited to video games, as the concept of
modelling a world with ‘objects’ is a fitting mental model (Figure 3.11); players,
enemies and items are all objects, which contain the data and functionality that
they need to exist.

There is another larger, Kuhn-ian narrative of paradigm shifts within com-
puting, that of the dominant paradigm (dominant in general, or to a specific
field) can be overthrown by a successor. Object Orientated Programming be-
came dominant over the Procedural paradigm since the concept was fully de-
veloped by Alan Kay with the Smalltalk language in 1971 (Kay 1993).

Is progress important in computing?
I am using as my definition of progress as ‘having a way to do something, that is
better than the way you were doing it before’, where a ‘way’ may be embodied
(a tool) or not (an idea), and ‘better’ is a value judgement that can be taken
up with Robert Pirsig (1974; 1992).

Rather than a discussion about whether or not progress is in itself important,
this section is a discussion of the effects of computing artefacts on the person
using them.

“If computing is important –for daily life, learning, business, na-
tional defence, jobs and more– then qualitatively advancing comput-
ing is extremely important.”

Ohshima et al.
STEPS Toward The Reinvention of Programming (2012)

15

1 (define (fib n)
2 (cond ((= n 0) 0)
3 ((= n 1) 1)
4 (else (+ (fib (- n 1))
5 (fib (- n 2))))))

Figure 3.10: An algorithm to produce the Fibonacci sequence, written in the
functional language Scheme, a dialect of Lisp (Abelson and Sussman 1985,
1.2.2).

1 class MonsterBattle():
2 def __init__(self, monster1, monster2):
3 self.monster1 = monster1
4 self.monster2 = monster2
5 self.turn = 0
6

7 def do_turn(self, attacker, target):
8 attacker.attack(target)
9

10 def start(self):
11 while not self.monster1.fainted and not self.monster2.fainted:
12 if self.turn % 2 == 0:
13 attacker = monster1
14 target = monster2
15 else:
16 attacker = monster2
17 target = monster1
18

19 self.do_turn(attacker, target)
20 self.turn += 1

Figure 3.11: Code for a monster battle game, written in Python using the Object
Orientated paradigm (by author).

16

Abstraction
As previously discussed, one of the major forms of progress in programming
languages has been the ‘level of abstraction’ from the underlying hardware at
which they operate, allowing the user to focus more on the ‘what’ than the
‘how’.

This allows the programmer to create more complex systems, and has similar
gains to a good notation in mathematics “relieving the brain of all unnecessary
work, [which] sets it free to concentrate on more advanced problems, and in
effect increases the mental power of the race.” (Whitehead 1911, ch.5).

It is not the case however that a higher level language is intrinsically better
than a low-level language, there are good and bad languages at any level, as
well languages that are more or less suited to particular domains; JavaScript is
the only language that runs in the web browser, but its poor design11.

Programming Experience (PX)
If we consider programming as a medium for exploring new ideas12 then im-
proving the experience of programming is important in helping realise those
new ideas which may be critical to solving the problems of the day. This is an
area that is generally undernourished, with the programmer being required to
mentally work out what the computer is doing internally. Improving this ex-
perience by providing better environments is an active area of research (Warth
et al. 2016; Victor 2012b) see Figures 3.12 and 3.13 for examples.

Side effects of languages
“A powerful programming language is more than just a means for
instructing a computer to perform tasks. The language also serves
as a framework within which we organize our ideas about processes.”

(Abelson and Sussman 1985, p.6)

“The limits of the language mean the limits of my world”

(Wittgenstein – Tractatus Logico-philosophicus, p.151)

The more interesting quality of programming languages is the effect they have
on the programmer. Opinion and evidence abounds that the programming
languages learnt, especially the first, has a lasting effect on the programmer’s
thinking style. Kay (2009, 43:14) employs a poetic metaphor to describe human
memory and the process of becoming fluent in a language: rainfall forms gulleys,
which “self- optimize”, becoming “more efficient at getting water through them,
so they erode faster”, within which we become comfortable or even trapped.
Dijkstra is characteristically more damning:

11infamously rushed in 10 days (Severance 2012, 7-8), see also the Appendices “Bad Parts”
and “Awful Parts” of JavaScript: The Good Parts, Crockford 2008) means you would not
want to use it on a space ship

12as opposed to a tool for implementing existing ideas

17

Figure 3.12: The Ohm editor, a tool for designing new programming languages.
Note the spatial layout, and visual feedback. On the left is the grammar cur-
rently being written, on the right is a list of examples with feedback as to
whether they parse correctly or not, and below is how the computer is parsing
each component of the current example (Warth et al. 2016).

Figure 3.13: An example from Bret Victor’s Learnable Programming of how
graphics programming looks today (top) and how the PX could be improved
(bottom), notice how the code is visualised for each line and over time.

18

“It is practically impossible to teach good programming to students
that have had a prior exposure to BASIC: as potential programmers
they are mentally mutilated beyond hope of regeneration.”

(Dijkstra, pp.129-130)

These anecdotal accounts are backed up by a study that found that pro-
cedural paradigm programmers found object-orientated programming (OOP)
difficult to learn, while OOP may have been cognitively easier, suggesting that
the paradigm previously ‘installed’ in their brains may be interfering (White
and Sivitanides 2005). Another study found that language design affected the
number of (syntax and logic) errors made by students (Mciver 2000). While
these types of studies are often limited (both of these studies were carried out
in university classrooms with 25-35 students, over a short period of term; no
more than a semester) they help confirm the concern in educational circles
(Vujoševic-Janicic et al. 2008; Wexelblat 1980).

Further empirical comparisons of languages have found differences in the
level of productivity afforded (Collier and Meyer 2000) and reliability of software
(Gannon 1977).

19

Chapter 4

Musical Interfaces

What is a musical interface?
For the purposes of this dissertation I am defining a musical interface as a
means of creating music, leaving aside the debate about the definition of music
itself. This definition can be considered as a bell curve: at the centre would be
artefacts that generate audible music, such as the instruments of an orchestra,
or Digital Audio Workstations like Logic Pro X (Apple Inc. 2016a) and Bitwig
Studio (Bitwig Studio 2016). A little further out we might find musical notation,
guitar effects pedals and signal processors like a limiter1.

Musical instruments are often described as an ‘extension of the human body’
(Nijs, Lesaffre, and Leman 2009), that may vastly expand the capabilities of the
performer. The tools and interfaces used by musicians can be seen as epistemic,
working “as props for symbolic offloading in our cognitive processes” (Magnusson
2009, p.2).

What is progress for a musical interface?
From my own experience I consider progress to be when a change of interface
creates a more direct connection between the ‘musical voice’ in my head, and the
sound produced by an instrument. To draw on the clichéd, but useful analogy
of music and spoken language (Wooten 2008, p.41) analogy, the experience is
very similar to trying to express an idea in a foreign language. While the idea is
formed in the mind, the lack of vocabulary prevents the idea from being conveyed
properly. This analogy can be stretched further by comparing languages: how
many times have we heard the complaint that there isn’t a word for something
in [insert language here]? Nabakov summarised this with “No single word in
English renders all the shades of toska.” (Pushkin and Nabokov 1990, p.141)
the same inexpressiveness can be true of interfaces.

More objective examples of progress in musical interfaces can be found in the
shift from hardware to software; Digital Audio Workstations provide a virtual
recording studio full of equipment that would cost (as hardware) tens, if not
hundreds of thousands of pounds only a few decades ago. This has afforded

1a piece of equipment that prevents an audio signal from being louder than a given threshold

20

bedroom musicians the means to create music that would have otherwise been
beyond their means. It also makes the studio portable, and virtual: musicians
are able to work while on the road, and the ‘studio’ can exist in two locations
simultaneously as collaborators send projects back and forth.

This type of tool can be traced back to multi-track recording (which enabled
the expansive arrangements of The Beach Boys and the Beatles), and way back
to to musical notation which did everything from giving composers the ability
to write for larger ensembles to enabling composers like Xenakis to experiment
with graphical notation as a compositional device Figure 4.1.

Figure 4.1: Bars 309-314 of Xenakis’ graphical score for Metastasis (Bal-
tensperger 1996, p125 in Sterken 2007, 40).

Is progress important in musical interfaces?
“Musical ideas are prisoners, more than one might believe, of musical
devices”

(Pierre Schaeffer (1977), p.16 in Roads 2001, p.44)

While an interface may act as an extension of the human body, this does
not come for free. Knowingly or not, by using a particular interface as part of
the music making process, decisions are made about the relative importance of
aspects of music: drawing on Clark, Chalmers, and Chalmers ’ (1998)’s concept
of the ‘extended mind’, Magnusson (2009, p.171) claims that

21

“...the piano keyboard ‘tells us’ that microtonality is of little impor-
tance; the drum-sequencer that 4/4 rhythms and semiquavers are
more natural than other types; and the digital audio workstation,
through its affordances of copying, pasting and looping, assures us
that it is perfectly normal to repeat the same short performance over
and over in the same track.”

This is not an academic concern, the musician Squarepusher has stated re-
peatedly that this is one of the prime reasons for custom developing music
software.

“The main point of [developing custom software] was to make avail-
able musical possibilities that I didn’t see being available through off-
the-shelf software or conventional musical hardware. [...] I can de-
termine my creative path, because I’m not being set into a prede-
termined creative structure that’s governed by engineers, not musi-
cians.”

(Mettler 2015)

Some musicians have such a strong relationship with their instruments that
they become synonymous with it (e.g. Jimi Hendrix with the electric guitar)
and in Indian classical music the greatest exponents of an instrument can be
given their instruments as a title (e.g. South Indian classical musician Mandolin
Uppalapu Srinivas). The composer’s choice of instrument(s) to write for is not
arbitrary, but based on the affordances of the instrument, which may be a par-
ticular sound, or the musical possibilities afforded by the physical construction:
want simultaneous chords and melody on a single instrument? The flute is out,
better make it a piano. Want a melody to sound strained or ‘very painful’?
follow Stravinsky’s example in The Rite of Spring and put it in the extreme
upper range of a wind instrument2.

Interface Influence
“Many of the most important influences on our perceptions and be-
haviour are hidden from us.”

(Richard Nisbett, Mindware: Tools for Smart Thinking, p.15)

With so much power in interfaces, both to extend and to constrain their (poten-
tially unaware) wielder, progress in terms of interfaces is critical. If an interface
(for music making, programming, or other) becomes a source of distraction,
drawing away attention from the task it is mediating, the effect can be dev-
astating. This phenomenon features heavily in the work of Mihaly Csikszent-
mihalyi (2009) who discusses how the smallest lapse in concentration can be a
disaster for anyone involved in a skilled activity, destroying their state of ‘flow’
(Csikszentmihalyi 2009, p.212).

2There are a number of accounts of Stravinsky’s intentions with this solo another being to
imitate the Dudka folk instrument (Grymes 1998)

22

“We shape our tools and thereafter they shape us”

(Culkin – “A schoolman’s guide to Marshall McLuhan”, p.70 1967a)
aThis quote is commonly misattributed to McLuhan rather than Culkin, a friend of

McLuhan’s. Clarification via Kuskis 2013

23

Chapter 5

Revolution, Education,
Stagnation, Domination

This chapter will explore examples of revolutions (successful and failed) in com-
puting and musical interfaces, as well as why sometimes things get stuck in a
phase of normal science or stagnate entirely.

Xerox PARC: Dealers of Lightning, Catalyst of
Crisis
Xerox PARC1 opened in July 1970 as Xerox’s ‘blue sky’ research lab, to investi-
gate the future of digital computing, solid- state- physics and material science.
Founded by Jack Goldman, who hailed from the J.C.R. Licklider2 lineage of
funding and research management (Hiltzik 2009, p.80, 28, 44).

The pop-history account is that PARC invented personal computing as we
know it3 then failed to capitalise on it, while letting Apple have the crown jewels
for their Macintosh (Hiltzik 2009, p.42). While true that few products reached
the market4 (Hiltzik 2009, p.15) the impact it had on computing is huge.

PARC’s success
So what made PARC successful? Can it alone be said to have had a successful
revolution? Hiltzik cites four big contributors to PARC’s ‘explosive creativity’:
money, people, timing and management (Hiltzik 2009, p.26).

At the time, Xerox had a near-monopoly on the office copier market, giving
it a ‘seemingly limitless cascade of cash’ (Hiltzik 2009, p.26). This allowed

1Palo Alto Research Centre
2then head of the Command & Control Research project at the US Defense Department’s

Advanced Research Projects Agency’s (ARPA, now DARPA) (Hiltzik 2009, p.42)
3Graphical User Interfaces (GUIs), WYSIWYG (What You See Is What You Get) docu-

ment editing, mixed fonts in a single document, Undo, Copy and Paste, the Desktop, Folder
and Window metaphors...

4the laser printer being a notable exception that earned Xerox billions of dollars, a many
times over return on investment for PARC (Hiltzik 2009, p.27)

24

researchers to take advantage of Moore’s law5 (Figure 5.1) (Moore 1998) in a
practical sense; a computer (the Alto) with memory that cost $10,000 in 1973,
but would only be $30 in 1983 (Hiltzik 2009, p.20). The Alto cost $22,000 per
machine6, not economically viable as a product but gave them (in 1973) “a 1989
Mac [...which meant] you could invent all the stuff the 1989 Mac was gonna run.
Then 1989 would have to wind up being like what you did because nobody else
would have the time to invent [it]” (Kay 2009, 50:04).

Figure 5.1: Visualisation of Moore’s law, originally published 1965 (Moore
1998).

The money would have meant nothing without the right people. The polit-
ical and economical climate7 created a buyer’s market for research talent, and
“–outside of a handful of top universities– [PARC] was the only game in town”
(Hiltzik 2009, p.107). The PARC team included three future Turing Award8

winners9, co-inventors of Ethernet Bob Metcalfe and David Boggs, Charles
Simonyi10, Larry Tesler11, Adele Goldberg12, and Dan Ingalls among others
(Hiltzik 2009, p.6-11).

Undoubtedly timing was also important, it was a historic moment in which
new computer architectures were becoming viable13, and semiconductor memory
chips were offering huge value in terms of speed and cost (Hiltzik 2009, p.25).
The PARC engineers knew that personal computing was not yet economically
viable for consumers, but recognised that they were at the point where they
could start designing for the moment they would become so.

5that the number of components (thus the computing power) per inch would continue to
double each year

6$121,900 in 2016
7The Vietnam war and a recession
8the ‘Nobel Prize of Computing‘ (Association for Computing Machinery 2016)
9Alan Kay, Butler W. Lampson and Charles P. “Chuck” Thacker

10who would go on to mastermind Microsoft Office
11later Apple’s Chief Scientist
12who became President of the Association for Computing Machinery (ACM) and the only

person who refused to give a demonstration to Steve Jobs, knowing what would happen
(Hiltzik 2009, p.766)

13a computer per person, instead of a time-shared mainframe

25

PARC’s management style and research philosophy were also critical to its
success: find the best researchers, hire them and then leave them (mostly)
without directives, instructions or deadlines. (Hiltzik 2009, p.26).

These four factors lead to the invention of personal computing as we know
it, Ethernet 14, Object Orientated Programming 15, the laser printer, as well as
early hardware for calculating 3D geometry16 (Hiltzik 2009, p.22, 254, 368).

PARC, Kuhn, Crisis, Apple
From a Kuhnian perspective, PARC’s ‘crisis’ was more one of foresight than
necessity: they had a vision of how much better it could be (in 1972 Alan
Kay was essentially proposing the iPad (Figure 5.2)) and set about trying to
realise it. The revolution they achieved was both the establishing of a new
field (personal computing) and changing the dominant computing paradigm, as
non-personal computing would continue, e.g. as infrastructure like web servers.

Another way to view PARC is as part of the revolutionary process, rather
than the revolution itself. While PARC had created a new paradigm, Xerox
were failing to bring it to market, if a revolution happens and no one is around
to see it, did it make an impact? The revolution that reached the people came
about as this technology was put into products that people could get their hands
on, namely Apple’s Macintosh. From this perspective, PARC were the crisis,
certainly for Steve Jobs, who during a demo was “waving his arms around saying
‘Why hasn’t this company brought this to market? What’s going on here? I
don’t get it!’ ” (Hiltzik 2009, p.416). PARC were an anomaly, something outside
the language, their system wasn’t fast enough or cheap enough for consumers,
but they changed ideas about what was possible. Bill Atkinson one of the Apple
engineers present at the demo said that “seeing the overlapping windows on the
Alto screen was for him more a confidence-builder than a solution [...] knowing
it could be done empowered me to invent a way it could be done” (Hiltzik 2009,
p.417)17.

Smalltalkin’ ’bout a revolution
The GUI was not PARC’s only paradigm shift that found success through influ-
ence. Smalltalk, the powerful and flexible programming language/environment
that powered the Alto (Kay 1993; Ingalls 1978) and was the first full embodi-
ment of the Object Orientated paradigm, never became a dominant language18.
It has been a phenomenal influence on other languages, of the top 20 languages
in an index of the most popular languages 14 are either Object Orientated or
support it (TIOBE - The Software Quality Company 2016). Languages such as
Apple’s Objective-C19 and Ruby20 draw heavily on Smalltalk.

14still the standard in networking today
15now the predominant paradigm
16which enabled rendering 3D images
17I call this the ‘900°’ moment: at the 1999 X-Games Tony Hawk performed the first mid-air

900° spin on a skateboard (World Sport 2015), it changed everyone’s ideas about what was
possible; in 2012, aged 12, Tom Schaar landed a 1080° spin (Red Bull 2012)

18Being popular is not the only measure of success, it is only a measure of popularity, which
an interesting phenomena in itself

19until recently the primary language used to write for Apple devices.
20heavily used in web development, Twitter was originally written in it.

26

Figure 5.2: Alan Kay’s Dynabook, (Kay 1972, p.6).

Many of Smalltalk’s concepts still haven’t made it into the most popular
languages of today: Smalltalk combined the notions of a language and an envi-
ronment, operating in symbiosis: the language was written within the environ-
ment, and the environment was programmed in the language. The benefit is
that users can not only use tools to create (documents, media, simulations) but
can modify them. Smalltalk also has a notion of images where the current state
of a system can be saved as a file, which can be transferred to other systems
(Kay 1993, p.8).

Instead of saving your thesis document you would also save the word pro-
cessor, your bibliography manager and your PDF reader, which could be re-
opened in exactly the same state on another computer, regardless of differences
in hardware21.

Smalltalk began life at PARC as part of a Learning Research Group22 project
to design a computer system simple enough to be used by children, but powerful
enough for them to learn through it (Hiltzik 2009, p.312). After a number of
iterations, Dan Ingalls, the lead implementer focused on transforming it into a
‘full-service’ programming language: Smalltalk-76, much to Kay’s dismay as “no
kid ever wrote any code for Smalltalk-76” (Hiltzik 2009, p.437). According to
Bret Victor this was Smalltalk’s own paradigm ‘freeze’, the constant flow of new
ideas that came with each previous version of Smalltalk ended as the normal
science phase began (Victor 2016b).

So Smalltalk’s method (whether it was intended or not) to revolution was to
become a great influencer, and while Kay (Kay 2011, 19:00) describes some of
the ways Smalltalk’s ideas were adapted to more traditional forms23 as ‘terrible’,
the method of influence is a powerful one.

21I recently had my first experience of Smalltalk, see Appendix A for a personal account of
a going back to the future.

22Alan Kay’s group
23C++ and Java applied Object Orientated ideas to the C language form

27

How to shift paradigms and influence people
As an alternative approach to designing new things that embody a proposed new
paradigm is to design things that express the ideas of that new paradigm. The
distinction here is that while something that is intended to be used will have
limitations on how well it can perform, something that only aims to express
ideas is free from the details of implementation. This is one of the strengths of
the musical score, it demands interpretation, whereas a recording provides an
exact performance which encourages copying verbatim.

This approach of ‘design for influence’ seems like an effective one when
proposing new paradigms, as at first the new paradigm is unlikely to be able
to solve all of the problems of a field Kuhn, p.147, which would only be high-
lighted by a concrete implementation. It is the underdog approach in design,
which tends to focus on “fiddling with the world out there rather than the ideas
and attitudes inside our heads that shape the world out there.” (Dunne and
Raby 2013, p.2).

This is the approach that Bret Victor24 has taken in talks and demos. Vic-
tor presents concepts as prototypes that function enough to be believable, but
may involve some smoke and mirrors in the implementation25. In the talk In-
venting on Principle (Victor 2012a, 37:00) Victor likens this work to activism,
i.e. Dunne and Raby’s ‘idea fiddling’. Victor justifies the smoke and mirrors
approach because all of the important work, the ideas, are there on the surface
and not in the implementation (Victor 2016b). The approach has proven ef-
fective, Victor is highly praised, and just two examples of real world products
inspired by Victor’s work are Apple’s Playgrounds (Lattner 2016; Apple Inc
2016) (Figure 5.3) and the code editor Light Table (Kodowa Inc 2016; Granger
2012).

The downside of this approach is that the work is open to misinterpretation,
if a prototype looks enough like a real product, the audience can have false
expectations about what is currently possible, and how ready for production
use it might be. This is something Bret has experienced, with people becoming
upset when the prototypes they mistook for products were not released (Victor
2016b).

I like to think of this approach as a person being a Kuhnian anomaly, by
creating new ideas that are outside of the common language (and publicising
them) they can induce a crisis in the minds of others.

Peter Norvig26 described influence as one of the Lisp language’s successes:
in response to the question ‘Why didn’t Common Lisp fix the world’ Norvig
responded by listing several common features that were uncommon before Lisp
and saying “the ideas won, but the Common Lisp implementations didn’t”
(Norvig 2016). Lisp is also the grandparent of JavaScript, the seventh most
popular programming language in 2016 (TIOBE - The Software Quality Com-
pany 2016) and the only language that runs in the web browser.

Making judgements as to whether an idea has been a ‘success’ in changing
24a researcher and one time ‘Human- Interface Inventor’ at Apple, whose work focuses on

new tools for thinking and understanding, and makes the case for paradigm shifts e.g. projects
like Kill Math (Victor 2011, 2016a)

25Victor’s previous work was more product focused, having worked on synthesisers for
Alesis, and Al Gore’s interactive climate change app

26Director of Research at Google and author of books on Lisp

28

Figure 5.3: Apple’s Swift Playgrounds, which was “heavily influenced” by Bret
Victor’s work (Lattner 2016).

minds and paradigms is difficult because it can take a long time for both the
fall of the old and the appearance of the new (Kuhn 2012, p.86). Xerox PARC
worked on the Alto for more than a decade before the ideas were brought to
the public with Apple’s Macintosh (Hiltzik 2009, p.16). On the other hand,
sometimes an invention instantly defines a paradigm, the Fender Stratocaster
has been the archetype electric guitar since 1954 (Minhinnett and Young 2006,
p.28) and forms of the Lisp language have been in use since being introduced in
1960 (McCarthy 1960).

Start a cult
A tried and true method for influencing people is to start a cult, usually with
a charismatic leader. In reading for this dissertation I found a number of char-
acters who were referred to in cult-like or religious terms, there wasn’t time or
space to explore this further, but see Appendix B for some quotes.

Education
“Students accept theories on the authority of teacher and text, not because of
evidence. What alternatives have they, or what competence?” (Kuhn 2012,
p.80). This gives the educator a position of huge influence, able to guide stu-
dents towards new emerging ideas, or to reinforce the well-trodden road. In
computing, education is where students are likely to first become fluent in a
language27, which also makes it a prime leverage point for a language to gain
popularity.

Processing (Fry and Reas Casey 2016) and openFrameworks (Community
2016), two ‘creative coding’ frameworks were both initially developed and used

27the effects of which were discussed in Chapter 3

29

in educational settings28, where a class curriculum might require their use. This
instantly built their communities, helping them become two of the most popular
tools for artists and designers working with code.

General purpose programming languages have a symbiotic relationship with
education, where the most popular languages in university introductory courses
overlap heavily with the most popular languages in industry29 creating a cycle
of popularity (and potential for stagnation!).

Max (Figure 5.4) is a ‘visual programming language for media’ (Cycling
’74 2016a), popular with musicians. It has specifically targeted educational
(Cycling ’74 2016b) institutes such as universities and IRCAM30 which runs
Max educational courses for professional composers.

Figure 5.4: A ‘patch’ made in Cycling ’74’s Max (Cycling ’74 2016a).

While targeting education can have benefits for a tool31 there are potential
negative effects for the student32.

28MIT/Interaction Design Institute Ivrea/UCLA and Parsons/NYU respectively
29four out of five of the most popular teaching languages in 2014 (Guo 2014) are also in the

top five languages in industry (TIOBE - The Software Quality Company 2016), the other is
number 15.

30the Institute for Research and Coordination in Acoustics/Music, a public research centre
‘dedicated to both musical expression and scientific research’ (IRCAM 2016)

31further support for their paradigms, or from a more cynical perspective, more revenue for
commercial tools like MATLAB or Max

32educational discounts are in a sense buying life long customers who have trouble leaving
the now familiar paradigm if the crisis (price) is not big enough

30

...or lack thereof
The establishing of a paradigm brings with it the development of textbooks33,
which while proving clarity, precision and a systematic form (Kuhn 2012, p.164),
also limit the historical sense of the reader to the most recent revolutions in the
field (Kuhn 2012, p.136). There is also the tendency to rewrite history ‘partly
because the results of scientific research show no obvious dependence upon the
historical context of the inquiry, and partly because, except during crisis and
revolution, the scientist’s contemporary position seems so secure’ (Kuhn 2012,
p.137).

This can be disastrous, as many of the good but lesser known ideas of the
past are easily forgotten, this is common with programming languages where
an idea or feature may be forgotten because the language falls out of fashion.
In my own computer science education, there was no course dedicated to the
history of the field; curious as to whether this was the norm I performed brief
survey34 of the top ten Computer Science university departments in the world
(QS Quacquarelli Symonds Limited 2016), and found only Carnegie Mellon
and Berkeley currently offered a history class, while Princeton and Stanford
previously ran one.

Technology is people
“The important thing for activists to realize is that everything comes
down to community. It’s always about people.”

(Srdja Popovic35 - Blueprint for Revolution, p.545)

As much as we might want to imagine that ‘hard’, ‘rational’ subjects like
Science and Computing are on a rational march of progress, or that the beautiful
fields of Music, Science and Mathematics have an ethereal existence beyond our
mortal hands, the reality is that they too are subject to our flawed humanity;
our ideas and symbols for these things are entirely our creation. Kuhn discusses
in depth the challenges a nascent paradigm faces: as well as having to explain
existing phenomena, the scientific community must be persuaded, who will have
an array of irrational biases, such as the personality, reputation and nationality
of the innovator (Kuhn 2012, p.147-157). Hamming notes this in the more
general process of progress:

“Often it is not physical limitations which control but rather it is
human made laws, habits, and organizational rules, regulations, per-
sonal egos, and inertia, which dominate the evolution to the future”

((Hamming 1997, p.5))

A large scale study of programming language adoption (Meyerovich and
Rabkin 2013) found that the second most important factor36 were the social
aspects: especially team and personal experience. Surprisingly, objective factors

33literal or methodological
34results published at https://github.com/acarabott/cs-history-education-review
35One of the leaders of the Otpor! movement that helped topple Serbian president Slobodan

Milošević (Popovic and Miller 2015, p.1)
36the most important was the availability of open source libraries: ready to use chunks of

code for a particular domain

31

https://github.com/acarabott/cs-history-education-review

such as performance, reliability, simplicity, and security were weak influences on
language choice (Meyerovich and Rabkin 2013, p.9).

Community matters
The Processing creative coding framework (Fry and Reas Casey 2016) and Ar-
duino hardware prototyping platform (Arduino S.R.L 2016) were both developed
and taught in educational settings. They provide extensive tutorials, encourage
sharing of code, exhibit users’ work prominently and nurture their communities.

These factors have made them admirably popular, despite their technical
shortcomings37.

Stagnation
Sometimes a lack of progress is caused by resistance to change. The ‘that’s not
real programming’ cycle has already been discussed38, where it can take a new
generation to embrace a new paradigm. Software also has a tendency to stick
around, re-tooling is expensive (Kuhn 2012, p.76) and building a half-life into
software is difficult (Kay 2009, 36:55).

Since the success of Leo Fender’s Stratocaster in the 1950s (Bacon 2010,
loc.458), the electric guitar has hardly changed in ways that are not cosmetic,
in the words of Gibson Guitar’s CEO Henry Juszkiewicz “The industry hasn’t
changed in 50 years. That’s a lifetime!” (McIntyre 2015).

Musical interfaces have a tendency for skeumorphism: software tools go
to great lengths to emulate the high quality sound of their analogue ancestors;
unfortunately the philosophy carries through to their interfaces. The immediate
familiarity will have helped convert sceptics to the new digital world, but are
terrible interfaces considering their new medium.

Figure 5.5: The UAudio 1176 Limiter. One of these is a photograph of the
hardware interface, the other is the software emulation.

At the basic level of interaction, a virtual rotating potentiometer is a ridicu-
lous thing on a screen. These types of controls work in hardware because of
their physical affordances: you can actually hold them! They are gripped and

37Processing has been described as ‘poorly-designed’ and ignorant of ‘decades of learning
about learning’ (Victor 2012b)

38Chapter 3 – Computing Paradigm Shifts

32

turned with the thumb, not with a single pointing digit. On a screen, trying to
rotate them is cumbersome, so they tend to use the vertical dragging movement
that has no relation to the on screen control! (Figure 5.6)

Figure 5.6: Two software dials from Logic Pro X (Apple Inc. 2016a) Neither of
these two common interaction movements makes sense for the on screen control.

An even less excusable example of ignoring the computer is the fact that these
interfaces are only designed for a real-time context, while the computer provides
parallel, non-real-time access to data; interfaces usually provide feedback for
the audio signal passing through them now despite the fact that they will be
affecting many minutes of audio (Figure 5.7). Again, this makes sense in the
hardware world where the device can not know the signal it is going to receive in
the future. In the computer world however, we know exactly what the audio will
look like in the future (and looked like in the past), it’s right there, recorded
to the hard disk or in memory!39. So these interfaces provide feedback for a
tiny sliver of time, while affecting the entirety of the signal, see Figure 5.8 for a
threshold control that can be understood in the context of the whole recording.
How to deal with stagnation? Unfortunately the smell may be something else...

“a new scientific truth does not triumph by convincing its opponents
and making them see the light, but rather because its opponents even-
tually die”

(Thomas S. Kuhn (2012), p.150)

Crisis
Kuhn talks of crisis as a part of the process of paradigm shifts (Kuhn 2012,
p.66), common sense gives an understanding for this: what good is a revolution
without a problem to solve? ‘If [the paradigm] ain’t broke, don’t fix it’. Even
if an alternative has a good claim, it needs to be enough of an improvement
to demand ‘re-tooling’, an expensive activity (Kuhn 2012, p.76). Crises are
valuable because they create value for the people involved.

“you had to suffer shipwreck through your own efforts before you were
ready to seize the lifebelt”

(E Herrigel - Zen in the art of archery, p.35)
39yes we could record to tape before computers, but there was no way to read the whole

tape simultaneously

33

Figure 5.7: A threshold control from Logic Pro X (Apple Inc. 2016a) with
disconnected, real-time only feedback.

Figure 5.8: An improved threshold control by the author that places the thresh-
old control in the context of the whole recording.

34

Python 2/3 - a lack of crisis (the curse of good enough)
The Python language has suffered a lack of crisis in its attempt at revolution.
Version 3 was released in 2008, and was intentionally backwards incompatible
with code written in version 2 (Rossum 2008). Despite settings 2015 as the ‘End
of Life’ for version 2, in April 2014 this was extended to 2020 (Rossum 2014), as
for many industries it is still the standard. One of the most incompatible changes
was to how text data is handled (defaulting to Unicode instead of ASCII), which
while important to web development40 is less critical to say, Hollywood special
effects automation; there is little incentive to invest millions of dollars to convert
decades of reliable software.

MIDI and OSC: Crisis, what crisis?
MIDI: Crisis!

Before MIDI (Musical instrument Digital Interface) was established in 1982,
spearheaded by Dave Smith of Sequential Circuits and Ikutaru Kakehashi of
Roland, the burgeoning synthesiser industry was beginning to face a true cri-
sis: compatibility; musicians wanted to control multiple synths using a single
keyboard (to combine their sounds) but the manufacturers were using different
mappings between voltage and parameters such as pitch (Billias, ch5-6).

After publishing a proposal at the Audio Engineering Society in 1981 (Smith
and Wood 1981), Dave Smith organised a meeting at the 1982 January NAMM
(National Association of Music Merchants) show with the big industry players.
This had all the turmoil Kuhn describes as typical of the proposal face of a new
paradigm (Kuhn 2012, pp.148, 149, 94) with companies making refusals and
no resolution found. After the meeting, a small group of representatives from
Japanese companies approached Smith, and together they forged ahead anyway,
releasing the first MIDI equipped products in time to make the first MIDI
connection between two companies’ devices at the 1983 NAMM show (Billias;
Smith 1997). With products from other conspirators following soon after, it was
enough to make MIDI a de-facto standard, because “if Roland, Korg, Yamaha
and Sequential did something, nobody would have a choice, they’d have to do
it, they’d be left in the cold if they didn’t abide by it.” (Smith 1997, 2:24).

OSC: What crisis?

Since being announced in 1997 (Wright and Freed 1997) the OSC (Open Sound
Control) protocol has offered itself as a competitor to MIDI as the standard
for communication for ‘sound synthesizers, computers and other multimedia de-
vices’ i.e. digital musical interfaces. The protocol was said to enable ‘lower costs,
increased reliability, greater user convenience, and more reactive musical con-
trol’ and to avoid MIDI’s flaws (Wright and Freed 1997). One of MIDI’s biggest
weaknesses is that data is 7-bit, so only whole numbers between 0 and 127 are
possible, this is not ideal if you want to achieve a smooth curve over a long
period of time as the jumps between values will be noticeable (see Figure 5.9).
Today, OSC has a growing popularity in software communication, with support
appearing in major applications, but has made little impact in the world of mu-
sic hardware, where MIDI still reigns supreme; hardware makes up 18% of the

40 ¡ éšṗéçîåłłẏ î̆f ẏøü çåré åb
¯
øüt

¯
ṗéøṗłé w̆hø d. ø ñøt

¯
w̆rît

¯
é îñ Éñḡłîšh 凄すごいね!

35

OSC website’s list of implementations (Open Sound Control Organisation 2016)
(the rest are software), all of which for control (of other instruments sound, not
sound generating devices themselves), all but one are amateur projects and one
of which is to convert OSC signals into MIDI.

Figure 5.9: A sine curve (at two levels of zoom) drawn at MIDI and OSC
resolutions, note the harsh stepping of MIDI compared with the smoother curve
of OSC.

Despite MIDI’s flaws, it has proven sufficient41 for most musicians, as well
as simple and cheap enough to be included on millions of products. Unfortu-
nately for OSC, there wasn’t enough of a crisis to warrant it becoming the new
standard42

41or not insufficient enough to warrant uproar
42I have a personal sense of conflict bashing OSC, I have used it on many software projects,

and it is really useful! I feel it should only be regarded as a failure on its own terms!

36

MIDI: the sequel(s)

True to Kuhn’s model, MIDI established itself as the paradigm: becoming frozen
by professionalism, hostile to change (after ironing out some early issues (Smith
1997)) and leading to an “immense restriction of the scientist’s vision” (Kuhn
2012, p.64) (swap scientist for musician or audio engineer). MIDI has been
accused of ‘sapping momentum’ from synthesis algorithm research by composers
(Smith III 1991).

Fortunately for MIDI, it has a growing crisis on its hands: ‘multidimensional
polyphonic expression’. MIDI held up well with discrete notes (like those on a
keyboard) combined with a pitch bend control that could smoothly bend the
current notes, unfortunately (for MIDI) there has been a growth of controllers
that permit bending individual notes, independently of each other, allowing for
nuances like per key vibrato and changes in timbre, some of which are becoming
commercially successful! (Figure 5.10)

Currently these have to use overly complex and inefficient set-ups to work
properly, in some cases with a separate synthesiser per musical voice43. Fortu-
nately for MIDI this means it has it’s very own crisis on it’s hands, hooray, time
for a revolution!

While it remains to be seen how this will play out, there are currently two
proposals for advancing MIDI, with differing approaches. The first is the “HD
Protocol”, for which there is no public specification, or even feature list, de-
spite being under discussion since 2005 by The MIDI Manufacturers association
(MMA), ‘a volunteer-run organization that operates on industry consensus’ (The
MIDI Association 2015). Such troubling ‘beginnings’44, design-by-committee,
and a weak battle cry: it will not replace MIDI, this would be “an unrealistic
expectation [...] MIDI is extremely cost effective [...] while HD is not; and MIDI
already handles most applications that people have today” (Synthtopia 2015),
do not bode well. This could have been the fate of MIDI 1.0 if the band of
rebel’s had not said “let’s just do it” (Smith 1997).

This was precisely the approach of the second proposal. Multidimensional
Polyphonic Expression (MPE) proposes to augment the existing MIDI protocol
with a set of rules that work on top of the original specification to support
per-note parameter control. The group behind it was a collective known as the
MPE / Expressive MIDI consortium, made up of representatives from a small
number of companies45 who released a public draft specification in March 2015
(Gaynes et al. 2015). The rapid development has meant that by December 2015
the group (now called the MPE Working Group) has been recognised by the
MMA, who are now providing support and guidance (Adam et al. 2015).

Unfortunately for anyone holding out for a full blown revolution, this appears
to be some ‘normal science’ work, bending the paradigm to sweep away an
anomaly. Given the problems with OSC and the HD Protocol, this is perhaps
a rational and practical approach, which has the potential for a revolution in
controllers with polyphonic continuous control, successfully reducing one of the
big gaps between acoustic and digital instruments46. Unfortunately this crisis

43 this is like having six guitars, one for each string
4411 years and counting
45Apple, Roger Linn Design, Eigenlabs, Moog Music, Uwyn, Haken Audio, Moog Music,

Bitwig, Madrona Labs, ROLI, Roger Linn Design, Keith McMillen Instruments
46the violin has had this feature for hundreds of years

37

Figure 5.10: Three continuous MIDI controllers: ROLI’s Seaboard Rise (ROLI
2015), Roger Linn Design’s LinnStrument (Roger Linn Design 2014) and Eigen-
labs’ Eigenharp (Eigenlabs 2010).

38

diffusion will mean that it will be a while before a real improvement can become
a standard.

Force and Endorse
Of course a simple method of ensuring your paradigm is successful is (providing
you have the leverage) simply force it upon people.

Apple is known to use its considerable influence to kill incumbent technolo-
gies: the floppy disk with the iMac, Flash in the browser (while endorsing the
new paradigm, modern HTML/CSS/JavaScript) with the original iPhone, and
more recently the 3.5mm “minijack” headphone connection.

Apple are also able to promote their own programming languages (Swift
and Objective-C) by making them the only way to write software that takes full
advantage of their platform47.

The shining example of success through force (or forced choice) is JavaScript;
hastily designed in 10 days (Severance 2012, p.7-8), but the only language that
can run within all web browsers.

47this is true of other vendors, like Microsoft with their .NET platform

39

Chapter 6

How to start a revolution

History suggests that the road to a firm research consensus is ex-
traordinarily arduous.

(Thomas S. Kuhn - The Structure of Scientific Revolutions, p.15)

No royal road to revolution
There is no royal road to revolution1, but we have looked at a number of roads
(somewhat) travelled, from these we can take notes and look for similarities to
our own situations in order to find clues as to what the most effective next step
should be.

Kuhn’s model provides some guidance: look for anomalies and question
them, as they can be seen ‘from another viewpoint as a counterinstance and
thus as a source of crisis’ (Kuhn 2012, p.80). A crisis provides a need for
revolution and evidence to others that one is necessary; the case of MIDI and
OSC2 showed this to be true, and the case of Python3 was an example of
an attempt at revolution without enough crisis. More obviously a proposed
paradigm must ‘seem better than its competitors’, but fortunately need not
‘explain all the facts’ (Kuhn 2012, p.18). Kuhn also claimed that (in science) a
new paradigm demands the destruction of a prior paradigm (Kuhn 2012, p.96)
but as we have already seen this is not true for all cases4. One anxiety inducing
observation Kuhn makes is that those ‘achieve these fundamental inventions of
a new paradigm have been either very young or very new to the field whose
paradigm they change’ (Kuhn 2012, p.15). This was certainly true of the PARC
researchers, who were often freshly graduated PhD’s (Hiltzik 2009, p.178). This
makes sense if we consider Kuhn’s model on the P-revolutionary, personal level.
If a practitioner has become too embedded in the current paradigm, their skill
will become the ‘limits of their language’5, lacking the distance of a newcomer.

1to borrow a phrase from Euclid’s response to King Ptolemy’s request for a short cut to
understanding geometry (Proclus and Morrow 1992, p.57)

2Chapter 5 - MIDI and OSC: Crisis, what crisis?
3Chapter 5 - Python 2/3 - a lack of crisis (the curse of good enough)
4Chapter 5 - Stagnation
5Chapter 3 - Is progress important in computing?, Chapter 4 - Is progress important in

musical interfaces?

40

On the other hand, enough familiarity with the status quo is required to spot
anomalies, as one needs to know ‘with precision’ what to expect (Kuhn 2012,
p.65).

PARC6 had a number of variables which were likely contributors to its suc-
cess: a ‘blue sky’ research methodology, talented researchers, good timing and
a near endless cash flow. Relative timing should also be considered, if a revolu-
tion has recently taken place, it is unlikely that the field will embrace another
revolution soon afterwards.

Rather than trying to start a revolution alone, it may be more effective
to create a convincing argument for one, focusing on changing people’s minds,
especially if the idea is not yet fully formed; make your ideas so compelling
and beyond other’s language that your work is their crisis. If pursuing this
approach, it is key to know where it is and is not worth expending effort: on
presenting the ideas in a way that is believable, not on having a fully functioning
implementation7.

Ideas stay alive because they are in the heads of living people, if those people
die, so do the ideas. Building a community of ‘believers’ is critical, they will
progress the idea into reality8

Education can be a key leverage point for influencing ideas and building a
community9, but be conscious of the fact that your impact can be significant
and possibly permanent10.

Maintaining progress will require an awareness of the fact that you are in
the midst of a stagnant paradigm11 just recognising the fact may be enough of a
cause for concern that anomalies gain new importance, and start being prodded,
in the hope of finding a real source of crisis.

With enough leverage, you may have the ability to turn tides with, -at most-
self appointed crises or -at least- whimsy12.

If you really want to start a revolution, shift or create a paradigm, or change
the world, it may be best to follow Dave Smith’s example and just go and do
it13 because as Serbian revolutionary Srdja Popovic points out, the person who
will start your revolution ‘has to be you’ (Popovic and Miller 2015, p.308).

Patterns in Paradigms
I found Kuhn’s model of progress in Science compelling both because it was a
formalisation of what feels like an emergent process, one determined by chance
(‘who knows when the next big thing will happen? It could be right around the
corner!’) and also because I felt a similarity with progress in the fields I engage
with.

By the model’s own reasoning it should not be taken as infallible, it is as
much a paradigm as any it describes. It had to fight detractors and win over
followers when it first sought to establish itself, and (being a piece of writing)

6Chapter 5 - Xerox PARC: Dealers of Lightning, Catalyst of Crisis
7Chapter 5 - How to shift paradigms and influence people
8Chapter 5 - Technology is people
9Chapter 5 - Education

10Chapter 3 - Is progress important in computing?
11Chapter 5 - Stagnation
12Chapter 5 - Force and Endorse
13Chapter 5 - MIDI: Crisis!

41

it stiffened due to the necessity of publication, and eventually froze with the
death of its author. We are now left with ‘normal science’ work in the form
of introductory essays in anniversary editions (Kuhn 2012), and explorations of
the ideas such as this dissertation. These may provide useful or illuminating,
but in the bigger picture can only serve to bend the paradigm to account for
anomalies until the anomaly → crisis → revolution → paradigm pattern
can occur, which in the new paradigm will be accounted for entirely differently!

Writing and thinking about the model applied to these different fields lead
me to a realisation as to why I found this model so appealing and applicable.
It became a framework that I felt applied to more than just particular fields,
but to personal endeavours. Studying an instrument, developing technique and
proficiency require a great deal of work, but the biggest jumps in progress seemed
to come from realisations, mental breakthroughs, changes in perspective. In my
teens I attended a guitar camp in the woods near Gothenberg run by one of my
teenage guitar heroes, Mattias “IA” Eklundh (Eklundh 2016) who explained this
experience as “like running, and wondering why you are finding it so difficult
until you look down and realise your shoelaces are tied together”.

Once these realisations occur, it takes a lot of ‘normal science’ (i.e. practice)
to realise their potential. At this point they become ingrained habits, letting
you tackle material with ease: e.g. being able to quickly determine fingerings
or picking patterns. The downside is that your technique determines the music
you can make, and thus the music that you will make.

Habits are difficult to break, especially if they are serving you well. Chang-
ing them is a process of unlearning and relearning. As you explore the new
technique, at first you are unable to play everything you could before, just as
new scientific paradigms cannot account for all the phenomena that their pre-
decessors could, the experience is humiliating. It is also time consuming, it is a
‘re-tooling’, which is expensive (Kuhn 2012, p.76). Martin Taylor is one of the
most highly regarded guitarists today, who with phenomenal technique plays
bass lines, chords and melodies simultaneously. Yet Taylor advocates that stu-
dents do not copy the practise of resting the little finger of the picking hand on
the guitar, which Taylor regards as a bad habit (Taylor and Mead 2003, p.40).
Doing this robs the player of a useful finger, but for a player with technique
as formidable as Taylor’s, it is evidently not enough of a hindrance to induce a
Kuhnian crisis.

For these reasons, it is a process that is avoided by many musicians14. In-
deed, it can take a crisis to force a musician to make such changes. A memorable
personal experience of crisis occurred when attending a ‘Gypsy Jazz’ or ‘Jazz
Manouche’15 workshop, which concluded in a large group jam session. The
genre is primarily acoustic, and we were all playing acoustic guitars. When my
turn to solo came around, my electric guitar technique16 let me down: it did not
project anywhere close to those who played exclusively on acoustic instruments.
I was shocked, and began work on a new picking technique that would produce

14ever wondered why musician’s later work tends to be a re-hashing of their early material?
Although credit has to be given to the audiences, who establish their own expectations of
artists...

15the genre established by guitarist Django Reinhardt in the 1930s
16with an amplified instrument there is no need to play as loudly as possible, which requires

bigger movements. There is the requirement to mute the strings you are not playing more
than on an acoustic instrument (as these will be amplified), which means the hand has to stay
close to the guitar, using smaller movements

42

more volume on an acoustic guitar.
A similar story was be found with programmers, who despite continuing to

learn new languages regardless of age (Meyerovich and Rabkin 2013), have a
tendency to program in the style of their first (Section 3).

The story is repeated in many aspects of life, how many people fail to address
an aspect of their health -their posture, weight, sedentariness, exercise- that is
easily identifiable as not so great, until it creates a real crisis. How many people
still ‘hunt and peck’ at the keyboard instead of learning to touch type? If and
when it is dealt with, it can often require whole lifestyle changes, followed by
proclamations of the process being ‘life changing’, and now being ‘a whole new
person’.

In The Creative Mind: Myths and Mechanisms Boden coins the terms P-
creative and H-creative to account for two different types of creative events:
personal and historical. P-creativity occurs when a person “has an idea which
she could not have had before”, it is creative “no matter how many people may
have had the same idea already”. H-creativity occurs when “no one has had
that thought before” (Boden 2004, p.43). Boden references Kuhn’s work (Bo-
den 2004, p.75), and unsurprisingly the big scientific names overlap in their
work17. There is a pattern at play here, the process of revolution is not lim-
ited to Science, Computing, or Musical Interfaces, it is a human pattern that
permeates our efforts at progress; it can be P-revolutionary, H-revolutionary
or R-revolutionary, Relatively revolutionary - “revolutionary only to only those
whose paradigms are affected by them” (Kuhn 2012, p.93).

17Einstein, Kepler, Newton, Darwin...

43

“Learning a new idea, something that your brain isn’t well set up
for, could require almost as much creativity as inventing it in the
first place, as you have to invent it inside your head. And so you
can say that ‘normal’ is the greatest enemy with regard to creating
the ‘new’. The way of getting around this is you have to understand
normal not as reality, but just a construct. The way to do that, for
example, is just travel to a lot of different countries, and you’ll find
a thousand different ways of thinking the world is real.”

(Alan Kay - Normal Considered Harmful 2009, 39:08)

44

Appendices

45

Appendix A

Squeak/Smalltalk session
with Yoshiki Ohshima

Notes from a Smalltalk / Squeak (Squeak Project 2016) pair programming ses-
sion with Yoshiki Ohshima, a researcher who has collaborated with Alan Kay1

and Dan Ingalls2 since 2000 (Viewpoints Research Institute 2016).

Figure A.1: Working on an envelope GUI widget in Squeak / Smalltalk.

1Smalltalk’s inventor
2Smalltalk’s lead implementer and greatest champion

46

27/7” “'7

Transcription
• “Find self feeling this isn’t that much faster, the hard bit is the thinking”

• “Almost no reload[ing]! / compiling, even if slow progress, [we] don’t wait
for the the computer ever” (we were having difficulties with the underlying
problem more than the programming)

• “What is this feeling? Combo of

– ‘[I] don’t understand’

– unfamiliarity

– ‘why so [much] clicking [with the mouse]?’

– ‘this is really nice’

– ‘the gap is big - MAYA’ (Loewy 1951)

– ‘How to help this win?’,

• “Where did it go?” (The large number of overlapping windows turned the
desktop metaphor brought with it the problems of a messy desktop).

48

Appendix B

Cult

In reading for this dissertation a theme of cult or religious like behaviour ap-
peared1. In computing discussions, many topics are referred to as being ‘reli-
gious’, especially in arguments over operating systems, browsers, programming
languages, and the ultimate religious war: text editors2.

I have come to the conclusion that starting a form of cult is probably one of
the most effective (if morally questionable) methods of guiding a lot of human
power towards progress (in the direction of the cult leader’s choosing). Fully
exploring this would be for another piece of writing, instead here are some quotes
from the cutting room floor.

From Thomas Kuhn
“The man who embraces a new paradigm at an early stage must
often do so in defiance of the evidence provided by problem-solving.
He must, that is, have faith that the new paradigm will succeed with
the many large problems that confront it, knowing only that the older
paradigm has failed with a few. A decision of that kind can only be
made on faith.”

(Kuhn 2012, p.156)

“But crisis alone is not enough. There must also be a basis, though
it need be neither rational nor ultimately correct, for faith in the
particular candidate chosen. [...] Men have been converted by them
at times when most of the articulable technical arguments pointed
the other way.” (Kuhn 2012, p.157)

Alan Kay
Head of PARC’s Learning Research Group. I wrote the majority of this dis-
sertation in the mornings, weekends and evenings while interning at HARC, a

1Although this may just reflect the authors’ writing...
2Richard Stallman the cult leader-ish free software activist and creator of GNU Emacs

(one of the two editors at the centre of this religious war, the other being Vi) has jokingly
created The Church of Emacs and the character of St IGNU-cius

49

research group initiated and supported by Alan Kay; some of the researchers
have been working with Alan for decades (Dan Ingalls since the PARC days).
Alan’s presence was entrancing, and he was regularly spoken of in reverential
terms3 and quoted regularly; this created the feeling of a slight cult, or at least
of a cult leader, and I felt myself drink the Kool-Aid readily...

“Among the computer scientists familiar with his ideas, half thought
he was a crackpot and the other half a visionary. His name was Alan
Kay.”

(Hiltzik 2009, p.132)

“Having spent decades as an intellectual lone wolf, Kay redirected
his gift for communicating enthusiasm toward the goal of attracting
followers”

(Hiltzik 2009, p.307)

“Kay was known for wielding the most beguiling paintbrush in the
building. No one evangelized more convincingly on behalf of ideas he
found compelling, whether they were his own or belonged to others.
Kay proselytized out of necessity. The experience of emerging from
grad school with a four- hundred-page thesis describing a machine
that could not be physically realized had sent him into a psychological
tailspin. An old tendency toward depression, spurred by his inability
to execute, reasserted itself. “Right about that first year at PARC,
under psychotherapy, I discovered I was confusing my talent with
my temperament,” he said. “I didn’t have the temperament of a
programmer. I realized I needed a group.” This epiphany resembled
that of a poet suddenly finding his voice.”

(Hiltzik 2009, p.307)

“Drawn toward a new vision of Ideaspace, he brought the entire group
to Pajaro Dunes for a three-day offsite in January 1976 to chart the
new journey. Reinfused with enthusiasm, he even gave the retreat a
theme–“Let’s burn our disk packs,” an allusion to the big yellow Alto
storage disks on which they kept Smalltalk’s master code. Then he
discovered that they were no longer willing to follow him blindly.”

(Hiltzik 2009, p.436)

Douglas Engelbart
Computer visionary who aimed to ‘augment human intellect’, inventing hyper-
text, video conferencing, the desktop, and the mouse in the process (Hiltzik
2009, pp.112-114), usually reduced in obituaries to ‘inventor of the mouse’.

“young engineers and scientists who felt their lives altered by their
first meetings with the charismatic Doug Engelbart and who regarded
his vision with an almost religious awe. “He not only made sense,”
recalled Bill Duvall, one of the early disciples.”

(Hiltzik 2009, p.112)
3not undeservedly, he’s the kind of person who built his own harpsichord while inventing a

powerful new programming paradigm, reads about 300 books a year and is good friends with
world renowned scientists, music producers, CEOs...

50

“As a team they infused Engelbart’s principles into PARC like apos-
tles spreading religion.”

(Hiltzik 2009, p.116)

“One admirer called him “a prophet of biblical dimensions,” a role
he fit down to his physical appearance. Tall and craggy, with deepset
eyes and a hawklike nose, he might have been carved from a slab
of antediluvian granite. Soft-spoken but intransigent, his years of
battling unbelievers had convinced him that he was fated to remain
the solitary leader of a devoted cadre.”

(Hiltzik 2009, p.115)

“One other individual entranced by Engelbart’s work was Bob Tay-
lor.”

(Hiltzik 2009, p.112)

Bob Taylor
Associate manager of PARC’s Computer Science Laboratory.

“I saw Taylor’s relationship to his lab members as analogous to Jim
Jones and the Jonestown cult”

(Hiltzik 2009, p.518)

“ “It was almost a cult-like thing” remembered Lynn Conway”
(Hiltzik 2009, p.222)

“Taylor’s a very powerful personality. Here he was in the background
with these gunslingers out front and the groupies in back.”

(Hiltzik 2009, p.222)

51

Figure B.1: Cult leader?

52

Appendix C

Interview with Bret Victor

On the 18th of August 2016 I interviewed Bret Victor at the HARC Los Angeles
office. This is included in the bibliography and cited as (Victor 2016b). My
notes are below, text in boxes/partial boxes are my summaries of the points
discussed.

53

BMET

Wows

lmexvmv

R‘M’V
*DM

~Cor—v ’(mwj ’APPt/Y TO

-— IKJHU mama AWL! <0 rw‘Pm‘wneé

ws’m

ammuw

wwwmw

VhE‘l

Vi

C1OK

‘ ‘1

«Whit ['0 l f In]?
I” san NLRL {9 “J4 I? 7

“0L , ff0}0l']rl .
Lav"; W ,. ,Cu 41” WW?

 -3-3'0" r'lL 0"!

,cre.[¢'

Bibliography

Abelson, Hal, and Gerald Jay Sussman. 1985. The Structure and Interpretation
of Computer Programs. 9:81. 3.

Adam, Chris, et al. 2015. MPE : Proposed specification - Revision 1.25a. Tech.
rep. MIDI Manufacturers Association - MPE Working Group. https://
docs.google.com/document/d/1vpjxoPHw82X3xyNvE6%7B%5C_%7DhsDe
L86vloNQZC83NHD8edow.

Apple Inc. 2016a. Logic Pro X. Visited on 09/23/2016. http://www.apple.
com/logic-pro/.

Apple Inc. 2016. Swift Playgrounds. Visited on 09/15/2016. http://www.apple.
com/swift/playgrounds/.

Apple Inc. 2016b. Xcode. Visited on 08/29/2016. https://developer.apple.
com/xcode/.

Arduino S.R.L. 2016. Arduino. Visited on 09/17/2016. http://www.arduino.
org/.

Association for Computing Machinery. 2016. A.M. Turing Award. Visited on
09/09/2016. http://amturing.acm.org/.

Audacity Team. 2016. Audacity. Visited on 09/23/2016. http://www.audacit
yteam.org/.

Bacon, Tony. 2010. The Stratocaster Guitar Book: A Complete History of Fender
Stratocaster Guitars. Backbeat Books.

Baltensperger, A. 1996. Iannis Xenakis und die stochastische Musik. Publika-
tionen der Schweizerischen Musikforschenden Gesellschaft / 2 v. 1. Haupt.

Billias, Athan. MIDI History. https://www.midi.org/articles/the-histor
y-of-midi.

Bird, Alexander. 2013. “Thomas Kuhn”. In The Stanford Encyclopedia of Phi-
losophy, Fall 2013, ed. by Edward N Zalta. http://plato.stanford.edu/
archives/fall2013/entries/thomas-kuhn/.

Bitwig Studio. 2016. Bitwig. Visited on 09/23/2016. https://www.bitwig.
com/.

Boden, Margaret A. 2004. The Creative Mind: Myths and Mechanisms. Second.
London: Routledge.

57

https://docs.google.com/document/d/1vpjxoPHw82X3xyNvE6%7B%5C_%7DhsDeL86vloNQZC83NHD8edow
https://docs.google.com/document/d/1vpjxoPHw82X3xyNvE6%7B%5C_%7DhsDeL86vloNQZC83NHD8edow
https://docs.google.com/document/d/1vpjxoPHw82X3xyNvE6%7B%5C_%7DhsDeL86vloNQZC83NHD8edow
http://www.apple.com/logic-pro/
http://www.apple.com/logic-pro/
http://www.apple.com/swift/playgrounds/
http://www.apple.com/swift/playgrounds/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
http://www.arduino.org/
http://www.arduino.org/
http://amturing.acm.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
https://www.midi.org/articles/the-history-of-midi
https://www.midi.org/articles/the-history-of-midi
http://plato.stanford.edu/archives/fall2013/entries/thomas-kuhn/
http://plato.stanford.edu/archives/fall2013/entries/thomas-kuhn/
https://www.bitwig.com/
https://www.bitwig.com/

Carlin, George. 1986. Stuff. Los Angeles: HBO. https://www.youtube.com/
watch?v=MvgN5gCuLac.

Clark, Andy, David Chalmers, and David Chalmers ’. 1998. “The extended
mind”. Source: Analysis 58187254 (1): 7–19.

Clark, Jack. 2016. Why Google Wants to Sell Its Robots: Reality Is Hard. Visited
on 08/30/2016. http://www.bloomberg.com/news/articles/2016-03-
18/why-google-wants-to-sell-its-robots-reality-is-hard.

Collier, David a., and Susan M. Meyer. 2000. “An empirical comparison of C,
C++, Java, Perl, Python, Rexx, and Tcl”. International Journal of Opera-
tions {&} Production Management 20 (6): 705–729.

Community, openFrameworks. 2016. openFrameworks Homepage. Visited on
09/17/2016. http://openframeworks.cc/.

Connor, Steven. 2010. “Thinking things”. Textual Practice 24 (1): 1–20.

Cooper, A. 1999. The Inmates are Running the Asylum. Sams.

Crockford, D. 2008. JavaScript: The Good Parts. O’Reilly Media.

Csikszentmihalyi, Mihaly. 2009. Flow. Harper Perennial Modern Classics. Harper-
Collins.

Culkin, John M. 1967. “A schoolman’s guide to Marshall McLuhan”. Saturday
Review 50 (11): 51–53, 70–72.

Cycling ’74. 2016a. Max. Visited on 09/17/2016. https://cycling74.com/
products/max/.

— . 2016b. Max in Education. Visited on 09/17/2016. https://cycling74.
com/max-in-education/.

Dijkstra, E W. 2012. Selected Writings on Computing: A personal Perspective.
Monographs in Computer Science. Springer New York.

Dunne, A, and F Raby. 2013. Speculative Everything: Design, Fiction, and Social
Dreaming. MIT Press.

Eigenlabs. 2010. Eigenharp. Visited on 09/05/2016. http://www.eigenlabs.
com/.

Eklundh, Mattias "IA". 2016. Mattias IA Eklundh’s Freak Guitar - The Official
Homepage. Visited on 09/08/2016. http://freakguitar.com/.

Engelbart, Douglas. 1962. “Augmenting Human Intellect: A Conceptual Frame-
work”. Contract 49 (3578): 80.

Fry, Ben, and Reas Casey. 2016. Processing. Visited on 09/17/2016. https:
//processing.org/.

Gannon, J. D. 1977. “An Experimental Evaluation of Data Type Conventions”.
Commun. ACM 20, no. 8 (): 584–595.

Gaynes, Amos, et al. 2015.MIDI Specifications for Multidimensional Polyphonic
Expression (MPE) - Revision 1.10. Tech. rep. MPE / Expressive MIDI

58

https://www.youtube.com/watch?v=MvgN5gCuLac
https://www.youtube.com/watch?v=MvgN5gCuLac
http://www.bloomberg.com/news/articles/2016-03-18/why-google-wants-to-sell-its-robots-reality-is-hard
http://www.bloomberg.com/news/articles/2016-03-18/why-google-wants-to-sell-its-robots-reality-is-hard
http://openframeworks.cc/
https://cycling74.com/products/max/
https://cycling74.com/products/max/
https://cycling74.com/max-in-education/
https://cycling74.com/max-in-education/
http://www.eigenlabs.com/
http://www.eigenlabs.com/
http://freakguitar.com/
https://processing.org/
https://processing.org/

Consortium. https://docs.google.com/document/d/1- 26r0pVtVBr
ZHM6VGA05hpF-ij5xT6aaXY9BfDzyTx8/edit.

Granger, Chris. 2012. Light Table by Chris Granger - Kickstarter. Visited on
09/15/2016. https://www.kickstarter.com/projects/ibdknox/light-
table/description.

Grymes, James A. 1998. “Dispelling the myths: The opening bassoon solo to the
Rite of Spring”. The Journal of the International Double Reed Society 26.

Guo, Philip. 2014. Python is Now the Most Popular Introductory Teaching Lan-
guage at Top U.S. Universities. Tech. rep. Communications of the ACM.
http://cacm.acm.org/blogs/blog- cacm/176450- python- is- now-
the-most-popular-introductory-teaching-language-at-top-u-s-
universities/fulltext.

Guzdial, Mark. 2016. Five Principles for Programming Languages for Learners.
Visited on 08/31/2016. http://cacm.acm.org/blogs/blog-cacm/203554-
five-principles-for-programming-languages-for-learners/fulltex
t.

Hamming, Richard. 1997. The Art of Doing Science and Engineering : Learning
to Learn. 218. Gordon / Breach.

Herndon, Thomas, Robert Pollin, and Michael Ash. 2013. “Does High Public
Debt Consistently Stifle Economic Growth ? A Critique of Reinhart and
Rogoff”. Political 38 (2): 257–279.

Herrigel, E. 1953. Zen in the art of archery. Vintage spiritual classics. Pantheon
Books.

Hiltzik, M A. 2009. Dealers of Lightning: Xerox PARC and the Dawn of the
Computer Age. HarperCollins.

Ingalls, Daniel H H. 1978. “The Smalltalk-76 programming system design and
implementation”. In Proceedings of the 5th ACM SIGACT-SIGPLAN sym-
posium on Principles of programming languages, 9–16. ACM.

IRCAM. 2016. Ircam: Formations professionnelles. Visited on 09/17/2016. htt
p://www.ircam.fr/formations.html.

Kay, Alan. 1972. A Personal Computer for Children of All Ages. Tech. rep. Palo
Alto.

— . 2009. Normal Considered Harmful. UIUC. https://youtu.be/FvmTSpJU-
Xc.

— . 2011. “Programming and Scaling”. In HPI-Colloquium (ST 2011). Potsdam:
Hasso-Plattner-Institut. http://www.tele- task.de/archive/video/
flash/14029/.

— . 1993. “The early history of Smalltalk”. In The second ACM SIGPLAN
conference on History of programming languages - HOPL-II, 28:69–95. 3.
New York, New York, USA: ACM Press.

Kay, Alan, et al. 2007. “STEPS Toward The Reinvention of Programming”.
VPRI Technical Report, no. TR-2007-008.

59

https://docs.google.com/document/d/1-26r0pVtVBrZHM6VGA05hpF-ij5xT6aaXY9BfDzyTx8/edit
https://docs.google.com/document/d/1-26r0pVtVBrZHM6VGA05hpF-ij5xT6aaXY9BfDzyTx8/edit
https://www.kickstarter.com/projects/ibdknox/light-table/description
https://www.kickstarter.com/projects/ibdknox/light-table/description
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/203554-five-principles-for-programming-languages-for-learners/fulltext
http://cacm.acm.org/blogs/blog-cacm/203554-five-principles-for-programming-languages-for-learners/fulltext
http://cacm.acm.org/blogs/blog-cacm/203554-five-principles-for-programming-languages-for-learners/fulltext
http://www.ircam.fr/formations.html
http://www.ircam.fr/formations.html
https://youtu.be/FvmTSpJU-Xc
https://youtu.be/FvmTSpJU-Xc
http://www.tele-task.de/archive/video/flash/14029/
http://www.tele-task.de/archive/video/flash/14029/

Kodowa Inc. 2016. Light Table. Visited on 09/15/2016. http://lighttable.
com/.

Krugman, Paul. 2013. The Excel Depression. New York, New York, USA. http:
//www.nytimes.com/2013/04/19/opinion/krugman-the-excel-depress
ion.html.

Kuhn, Thomas S. 2012. The Structure of Scientific Revolutions. 50th Anniv.
University of Chicago Press.

Kuskis, Alex. 2013. We shape our tools and thereafter our tools shape us. Visited
on 09/28/2016. https://mcluhangalaxy.wordpress.com/2013/04/01/
we-shape-our-tools-and-thereafter-our-tools-shape-us/.

Lattner, Chris. 2016. Chris Lattner’s Homepage. Visited on 09/15/2016. http:
//www.nondot.org/sabre/.

Lifelong Kindergarten Group at the MIT Media Lab. 2016. Scratch Homepage.
Visited on 08/31/2016. https://scratch.mit.edu/.

Loewy, Raymond. 1951. “The MAYA Stage”. In The Industrial Design Reader,
ed. by Carma Gorman, 155–158. Allworth Press.

Magnusson, Thor. 2009. “Of Epistemic Tools: musical instruments as cognitive
extensions”. Organised Sound 14 (02): 168–176.

McCarthy, John. 1960. “Recursive functions of symbolic expressions and their
computation by machine, Part I”. Communications of the ACM 3 (4): 184–
195.

McIntyre, Hugh. 2015. “Gibson Guitars ’ $ 40 Million , 11 Year Tech Gamble”.
Forbes. http://www.forbes.com/sites/hughmcintyre/2015/06/16/
gibson-guitars-40-million-11-year-tech-gamble/print/.

Mciver, Linda. 2000. “The Effect of Programming Language on Error Rates of
Novice Programmers”.

Meyerovich, Leo a., and Ariel S. Rabkin. 2013. “Empirical analysis of program-
ming language adoption”. Proceedings of the 2013 ACM SIGPLAN inter-
national conference on Object oriented programming systems languages &
applications - OOPSLA ’13, no. Section 7: 1–18.

Minhinnett, R, and B Young. 2006. The Story of the Fender Stratocaster. Carl-
ton.

Moore, Gordon E. 1998. “Cramming more components onto integrated circuits,
Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp. 114
ff.” Proceedings of the IEEE 86 (1): 82–85.

Nijs, L, M Lesaffre, and M Leman. 2009. “The musical instrument as a natural
extension of the musician”. the 5th Conference of Interdisciplinary.

Nisbett, Richard. 2015. Mindware: Tools for Smart Thinking. Penguin Books
Limited.

Norvig, Peter. 2016.Why didn’t Common Lisp fix the world? Visited on 09/15/2016.
https://www.quora.com/Where-did-we-go-wrong-Why-didnt-Common-
Lisp-fix-the-world.

60

http://lighttable.com/
http://lighttable.com/
http://www.nytimes.com/2013/04/19/opinion/krugman-the-excel-depression.html
http://www.nytimes.com/2013/04/19/opinion/krugman-the-excel-depression.html
http://www.nytimes.com/2013/04/19/opinion/krugman-the-excel-depression.html
https://mcluhangalaxy.wordpress.com/2013/04/01/we-shape-our-tools-and-thereafter-our-tools-shape-us/
https://mcluhangalaxy.wordpress.com/2013/04/01/we-shape-our-tools-and-thereafter-our-tools-shape-us/
http://www.nondot.org/sabre/
http://www.nondot.org/sabre/
https://scratch.mit.edu/
http://www.forbes.com/sites/hughmcintyre/2015/06/16/gibson-guitars-40-million-11-year-tech-gamble/print/
http://www.forbes.com/sites/hughmcintyre/2015/06/16/gibson-guitars-40-million-11-year-tech-gamble/print/
https://www.quora.com/Where-did-we-go-wrong-Why-didnt-Common-Lisp-fix-the-world
https://www.quora.com/Where-did-we-go-wrong-Why-didnt-Common-Lisp-fix-the-world

Ohshima, Yoshiki, et al. 2012. STEPS Toward The Reinvention of Programming,
2012 Final Report Submitted to the National Science Foundation (NSF) Oc-
tober 2012. 2012:52. 0639876.

Open Sound Control Organisation. 2016. Open Sound Control - Implementa-
tions. http://opensoundcontrol.org/implementations.

Pirsig, Robert. 1992. Lila: An Inquiry Into Morals. A Bantam Book. Bantam
Books.

— . 1974. Zen and the art of motorcycle maintenance. A Bantam book. Bantam.

Popovic, Srdja, and Matthew Miller. 2015. Blueprint for Revolution: How to
Use Rice Pudding, Lego Men, and Other Nonviolent Techniques to Galvanize
Communities, Overthrow Dictators, or Simply Change the World. Random
House Publishing Group.

Proclus and G R Morrow. 1992. A Commentary on the First Book of Euclid’s
Elements. Classics/History of mathematics. Princeton University Press.

Pushkin, A S, and V V Nabokov. 1990. Eugene Onegin: Commentary and index.
Bollingen Series (General) Series. Princeton University Press.

QS Quacquarelli Symonds Limited. 2016. Computer Science & Information
Systems Rankings. http : / / www . topuniversities . com / university -
rankings/university- subject- rankings/2016/computer- science-
information - systems % 7B % 5C # %7Dsorting = rank + region = +country =
+faculty=+stars=false+search=.

Red Bull. 2012. Tom Schaar stomps first-ever skateboarding 1080. Visited on
09/16/2016. https://www.youtube.com/watch?v=tbjzZHuGTng.

Ritchie, DM, and B Kernighan. 1978. The C programming language.

Roads, Curtis. 2001. Microsound. 409. MIT Press.

Roger Linn Design. 2014. LinnStrument. Visited on 09/05/2016. http://www.
rogerlinndesign.com/linnstrument.html.

ROLI. 2015. Seaboard RISE. Visited on 09/05/2016. https://roli.com/prod
ucts/seaboard-rise.

Rosetta Code. 2016. Reverse a string. Visited on 08/28/2016. http://rosetta
code.org/wiki/Reverse%7B%5C_%7Da%7B%5C_%7Dstring%7B%5C#%7D360%
7B%5C_%7DAssembly.

Rossum, Guido van. 2014. Python PEP 373 - Extend Python 2.7 life till 2020.
https://hg.python.org/peps/rev/76d43e52d978.

— . 2008. What’s New In Python 3.0. Visited on 09/03/2016. https://docs.
python.org/3/whatsnew/3.0.html.

Schaeffer, Pierre. 1977. Traité des objets musicaux essai interdisciplines. Second.
Éditions du Seuil.

Severance, Charles. 2012. “JavaScript: Designing a Language in 10 Days”. Com-
puter 45, no. 2 (): 7–8. http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6155645.

61

http://opensoundcontrol.org/implementations
http://www.topuniversities.com/university-rankings/university-subject-rankings/2016/computer-science-information-systems%7B%5C#%7Dsorting=rank+region=+country=+faculty=+stars=false+search=
http://www.topuniversities.com/university-rankings/university-subject-rankings/2016/computer-science-information-systems%7B%5C#%7Dsorting=rank+region=+country=+faculty=+stars=false+search=
http://www.topuniversities.com/university-rankings/university-subject-rankings/2016/computer-science-information-systems%7B%5C#%7Dsorting=rank+region=+country=+faculty=+stars=false+search=
http://www.topuniversities.com/university-rankings/university-subject-rankings/2016/computer-science-information-systems%7B%5C#%7Dsorting=rank+region=+country=+faculty=+stars=false+search=
https://www.youtube.com/watch?v=tbjzZHuGTng
http://www.rogerlinndesign.com/linnstrument.html
http://www.rogerlinndesign.com/linnstrument.html
https://roli.com/products/seaboard-rise
https://roli.com/products/seaboard-rise
http://rosettacode.org/wiki/Reverse%7B%5C_%7Da%7B%5C_%7Dstring%7B%5C#%7D360%7B%5C_%7DAssembly
http://rosettacode.org/wiki/Reverse%7B%5C_%7Da%7B%5C_%7Dstring%7B%5C#%7D360%7B%5C_%7DAssembly
http://rosettacode.org/wiki/Reverse%7B%5C_%7Da%7B%5C_%7Dstring%7B%5C#%7D360%7B%5C_%7DAssembly
https://hg.python.org/peps/rev/76d43e52d978
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6155645
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6155645

Smith III, Julius O. 1991. “Viewpoints on the History of Digital Synthesis”. In
Proceedings of the International Computer Music Conference, 1–10. Mon-
treal.

Smith, Dave, and Chet Wood. 1981. “The ’USI’, or Universal Synthesizer In-
terface”. In Audio Engineering Society Convention 70. Audio Engineering
Society.

Squeak Project. 2016. Squeak/Smalltalk Homepage. Visited on 08/29/2016. ht
tp://squeak.org/.

Sterken, Sven. 2007. Music as an Art of Space: Interactions between Music and
Architecture in the Work of Iannis Xenakis. Resonance (Ames, Iowa). Culi-
cidae Architectural Press.

Sublime Text. 2016. Sublime Text Homepage. Visited on 08/29/2016. https:
//www.sublimetext.com/.

Sureau, Denis. 2015. The list of programming languages by dates. Visited on
08/30/2016. http://www.scriptol.com/programming/chronology.php.

We Really Don’t Know How To Compute! 2011. Strange Loop. https://www.
infoq.com/presentations/We-Really-Dont-Know-How-To-Compute.

Sutherland, Ivan. 1964. “Sketch pad a man-machine graphical communication
system”. In Proceedings of the SHARE design automation workshop, 6–329.
ACM.

Taylor, M, and D Mead. 2003. Mel Bay Presents the Martin Taylor Guitar
Method. Mel Bay.

The MIDI Association. 2015.MIDI Manufacturers Investigate HD Protocol. Vis-
ited on 09/04/2016. https://www.midi.org/articles/midi-manufactur
ers-investigate-hd-protocol.

TIOBE - The Software Quality Company. 2016. TIOBE Index. Visited on 09/10/2016.
http://www.tiobe.com/tiobe-index/.

Torvalds, Linus. 2016. Git Homepage. Visited on 08/29/2016. https://git-
scm.com/.

Venners, Bill. 2003. The Philosophy of Ruby - A Conversation with Yukihiro
Matsumoto. Visited on 08/29/2016. http://www.artima.com/intv/ruby4.
html.

Victor, Bret. 2016a. Bret Victor Website. Visited on 09/15/2016. http://worr
ydream.com/.

— . 2012a. “Inventing on Principle”. In Canadian University Software Engineer-
ing Conference. Montreal, Quebec. https://vimeo.com/36579366.

— . 2011. Kill Math. Visited on 09/15/2016. http://worrydream.com/KillMa
th/.

— . 2012b. Learnable Programming. Visited on 08/27/2016. http://worrydre
am.com/LearnableProgramming/.

— . 2013. The Future of Programming. http://worrydream.com/dbx/.

62

http://squeak.org/
http://squeak.org/
https://www.sublimetext.com/
https://www.sublimetext.com/
http://www.scriptol.com/programming/chronology.php
https://www.infoq.com/presentations/We-Really-Dont-Know-How-To-Compute
https://www.infoq.com/presentations/We-Really-Dont-Know-How-To-Compute
https://www.midi.org/articles/midi-manufacturers-investigate-hd-protocol
https://www.midi.org/articles/midi-manufacturers-investigate-hd-protocol
http://www.tiobe.com/tiobe-index/
https://git-scm.com/
https://git-scm.com/
http://www.artima.com/intv/ruby4.html
http://www.artima.com/intv/ruby4.html
http://worrydream.com/
http://worrydream.com/
https://vimeo.com/36579366
http://worrydream.com/KillMath/
http://worrydream.com/KillMath/
http://worrydream.com/LearnableProgramming/
http://worrydream.com/LearnableProgramming/
http://worrydream.com/dbx/

Viewpoints Research Institute. 2016. Viewpoints Research Institute - Yoshiki
Ohshima. Visited on 09/14/2016. http://vpri.org/html/team%7B%5C_
%7Dbios/yoshiki.htm.

Vujoševic-Janicic, Milena, et al. 2008. “The role of programming paradigms in
the first programming courses”. The Teaching of Mathematics, XI 2:63–83.

Warth, Alex, et al. 2016. “Language Hacking in a Live Programming Envi-
ronment”. In 30th European Conference on Object-Oriented Programming
(ECOOP 2016), Workshop. Rome. https://ohmlang.github.io/pubs/
live2016/.

Wexelblat, Richard L. 1980. “The Consequences of One’s First Programming
Language”. In Proceedings of the 3rd ACM SIGSMALL Symposium and the
First SIGPC Symposium on Small Systems, 11:52–55. SIGSMALL ’80 7.
New York, NY, USA: ACM. http://doi.acm.org/10.1145/800088.
802823%20http://dx.doi.org/10.1002/spe.4380110709.

White, Garry, and Marcos Sivitanides. 2005. “Cognitive Differences Between
Procedural Programming and Object Oriented Programming”. Information
Technology and Management 6 (4): 333–350.

Whitehead, A N. 1911. An Introduction to Mathematics. Home university library
of modern knowledge. H. Holt.

Wittgenstein, L. 1922. Tractatus Logico-philosophicus. International library of
psychology, philosophy, and scientific method. Harcourt, Brace, Incorpo-
rated.

Wooten, V. 2008. The Music Lesson: A Spiritual Search for Growth Through
Music. New York, New York, USA: Berkley Books.

World Sport. 2015. Tony Hawk on performing the first 900. Visited on 09/16/2016.
https://www.youtube.com/watch?v=x3uJNssoaQg.

Wright, Matthew, Adrian Freed, et al. 1997. “Open sound control: A new proto-
col for communicating with sound synthesizers”. In Proceedings of the 1997
International Computer Music Conference, 2013:10. 8.

Ziemann, Mark, et al. 2016. “Gene name errors are widespread in the scientific
literature”. Genome Biology 17, no. 1 (): 177.

63

http://vpri.org/html/team%7B%5C_%7Dbios/yoshiki.htm
http://vpri.org/html/team%7B%5C_%7Dbios/yoshiki.htm
https://ohmlang.github.io/pubs/live2016/
https://ohmlang.github.io/pubs/live2016/
http://doi.acm.org/10.1145/800088.802823%20http://dx.doi.org/10.1002/spe.4380110709
http://doi.acm.org/10.1145/800088.802823%20http://dx.doi.org/10.1002/spe.4380110709
https://www.youtube.com/watch?v=x3uJNssoaQg

Interviews

Kay, Alan, and Arthur Carabott. 2016. Interview / Conversation with Alan Kay.
Los Angeles.

Mettler, Mike. 2015. Squarepusher Interview. http://www.digitaltrends.
com/music/squarepusher-interview-the-software-behind-damogen-
furies/%7B%5C#%7D/2.

Ohshima, Yoshiki, and Arthur Carabott. 2016. Squeak/Smalltalk Pair Program-
ming Session. Los Angeles.

Smith, Dave. 1997. Interview: Dave Smith on MIDI. Ed. by Eric Chasalow and
Cassidy Barbara. https://www.youtube.com/watch?v=Jq6%7B%5C_
%7Dvy4Pcwk.

Synthtopia. 2015. MIDI Manufacturers Association Says New HD Protocol ’Has
Reached A Milestone’ - Interview with MMA President Tom White. Visited
on 09/04/2016. http://www.synthtopia.com/content/2015/01/16/new-
midi-hd-protocol-has-reached-a-milestone/.

Victor, Bret. 2016b. Interview with Bret Victor. Ed. by Arthur Carabott. Los
Angeles.

64

http://www.digitaltrends.com/music/squarepusher-interview-the-software-behind-damogen-furies/%7B%5C#%7D/2
http://www.digitaltrends.com/music/squarepusher-interview-the-software-behind-damogen-furies/%7B%5C#%7D/2
http://www.digitaltrends.com/music/squarepusher-interview-the-software-behind-damogen-furies/%7B%5C#%7D/2
https://www.youtube.com/watch?v=Jq6%7B%5C_%7Dvy4Pcwk
https://www.youtube.com/watch?v=Jq6%7B%5C_%7Dvy4Pcwk
http://www.synthtopia.com/content/2015/01/16/new-midi-hd-protocol-has-reached-a-milestone/
http://www.synthtopia.com/content/2015/01/16/new-midi-hd-protocol-has-reached-a-milestone/

Exhibitions / Studio Visits

San Francisco Museum of Modern Art. 2016. Typeface to Interface. San Fran-
cisco.

Visit to Bret Victor’s Research Group. 2016. Oakland.

Visit to Dan Ingalls’ Research Group. 2016. San Francisco.

65

	Introduction
	Making Better `Things'
	A model of progress
	From `Things' to things
	Why should you care?
	Focus of this dissertation

	A Model of Progress
	Two types of work
	The stages of progress
	Using the model

	Computing
	Computing Definitions
	State of computing today
	Computing Paradigm Shifts
	Is progress important in computing?

	Musical Interfaces
	What is a musical interface?
	What is progress for a musical interface?
	Is progress important in musical interfaces?
	Interface Influence

	Revolution, Education, Stagnation, Domination
	Xerox PARC: Dealers of Lightning, Catalyst of Crisis
	How to shift paradigms and influence people
	Education
	Technology is people
	Stagnation
	Crisis
	Force and Endorse

	How to start a revolution
	No royal road to revolution
	Patterns in Paradigms

	Appendices
	Squeak/Smalltalk session with Yoshiki Ohshima
	Cult
	Interview with Bret Victor

